Gene-based and probe-based network modeling in some bovine tissues using DNA microarray data

Document Type : Research Paper

Authors

1 Ph.D. Canndidate, Department of Animal Science, University of Kurdistan, Sanandaj, Iran

2 Professor, Department of Animal Science, University of Kurdistan, Sanandaj, Iran

3 Assistant Professor, Department of Animal Science, Yasuj University, Yasuj, Iran

4 Associate Professor, Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran

5 Associate Professor, Department of Animal Science, University of Kurdistan, Sanandaj, Iran

Abstract

The aim of this study was to extract genes and probes hub based on Bayesian networks on probe and gene transcriptomic data over different tissues in Bovine species. Using raw probe and gene transcriptomic data in each tissue, genes and probes with the highest expression variances were extracted and fitted to Bayesian networks. The hub genes and hub probes were identified using the ratio of in-and-out degree.The size of the Markov Blanket was different in different networks. This might be indicative of existing of substructures topology of aforementioned network on different tissues. Using gene based network, in muscle (CBR1 and LOC788826); in mammary of (NID2, COL5A2, LOC616942 and FXYD3); in liver (LOC100132279; MGC127133; MBOAT2; CLDN2; ANKRD1; IGFBP1; DGAT2; CKMT1, ISG15, CKMT1), and in the ovary (LOC286871 and INHBA) were extracted as hub genes. It was shown that the hubs were different in different tissues. These results can be used for more accurate bioassays of each tissue. Using probe based network, two genes BOLA-DQB and JSP.1 would have function in liver and uterus tissues. The results of this study can reduce the gap between phonemics-and Genomics distance on investigated tissues in bovine species.

Keywords


  1. Alexandre, P. A., Kogelman, L. J., Santana, M. H., Passarelli, D., Pulz, L. H., Fantinato-Neto, P., Silva, P. L., Leme, P. R., Strefezzi, R. F. & Coutinho, L. L. (2015). Liver transcriptomic networks reveal main biological processes associated with feed efficiency in beef cattle. BMC Genomics, 16(1), 1073.
  2. Chang, H.-H. & Mcgeachie, M. (2011). Phenotype prediction by integrative network analysis of SNP and gene expression microarrays. In: Proceedings of Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 30 Aug - 03 Sep 2011, Boston Marriott Copley Place Hotel, Boston, MA, USA, pp. 6849-6852.
  3. Csardi, G. & Nepusz, T. (2006). The igraph software package for complex network research. Inter Journal, Complex Systems, 1695(5), 1-9.
  4. Elo, L. L., Lahti, L., Skottman, H., Kyläniemi, M., Lahesmaa, R. & Aittokallio, T. (2005). Integrating probe-level expression changes across generations of Affymetrix arrays. Nucleic Acids Research, 33(22), e193-e193.
  5. Fortes, M., Snelling, W., Reverter, A., Nagaraj, S., Lehnert, S., Hawken, R., Deatley, K., Peters, S., Silver, G. & Rincon, G. (2012). Gene network analyses of first service conception in Brangus heifers: use of genome and trait associations, hypothalamic-transcriptome information, and transcription factors. Journal of Animal Science, 90(9), 2894-2906.
  6. Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303(5659), 799-805.
  7. Gene Expression Omnibus. (2017). NCBI: National Center for Biotechnology Information, Retrieved November 14, 2017, from https://www.ncbi.nlm.nih.gov/geo/
  8. Ghaderi-Zefrehei, M., Dolatabady, M. & Rowghani, E. (2015). Simple gene regulatory network of immune system candidate genes in dairy cattle. Research Opinions in Animal and Veterinary Sciences, 5(12), 499-506.
  9. Girard, A., Dufort, I., Douville, G. & Sirard, M. A. (2015). Global gene expression in granulosa cells of growing, plateau and atretic dominant follicles in cattle. Reproductive Biology and Endocrinology, 13(1), 17.
  10. Hageman, R. S., Leduc, M. S., Korstanje, R., Paigen, B. & Churchill, G. A. (2011). A Bayesian framework for inference of the genotype–phenotype map for segregating populations. Genetics, 187(4), 1163-1170.
  11. Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. & Haussler, D. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996-1006.
  12. Kogelman, L. J., Cirera, S., Zhernakova, D. V., Fredholm, M., Franke, L. & Kadarmideen, H. N. (2014). Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model. BMC Medical Genomics, 7(1), 57.
  13. Komolka, K., Ponsuksili, S., Albrecht, E., Kühn, C., Wimmers, K. & Maak, S. (2016). Gene expression profile of Musculus longissimus dorsi in bulls of a Charolais × Holstein F 2-cross with divergent intramuscular fat content. Genomics Data, 7131-133.
  14. Langfelder, P. & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 9, 559.
  15. Liu, F., Zhang, S.-W., Guo, W.-F., Wei, Z.-G. & Chen, L. (2016). Inference of gene regulatory network based on local bayesian networks. PLoS Computational Biology, 12(8), e1005024.
  16. Malovini, A., Nuzzo, A., Ferrazzi, F., Puca, A. A. & Bellazzi, R. (2009). Phenotype forecasting with SNPs data through gene-based Bayesian networks. BMC Bioinformatics, 10(2), S7.
  17. Milchevskaya, V., Tödt, G. & Gibson, T. J. (2017). A Tool to Build Up-To-Date Gene Annotations for Affymetrix Microarrays. Genomics and Computational Biology, 3(2), 38.
  18. Nagarajan, R., Scutari, M. & Lèbre, S. (2013). Bayesian networks in R. Springer.
  19. Ramayo-Caldas, Y., Fortes, M. R. S., Hudson, N. J., Porto-Neto, L. R., Bolormaa, S., Barendse, W., Kelly, M., Moore, S. S., Goddard, M. E. & Lehnert, S. A. (2014). A marker-derived gene network reveals the regulatory role of, and in intramuscular fat deposition of beef cattle. Journal of Animal Science, 92(7), 2832-2845.
  20. Rebhan, M., Chalifa-Caspi, V., Prilusky, J. & Lancet, D. (1997). GeneCards: integrating information about genes, proteins and diseases. Trends in Genetics, 163(4), 13.
  21. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721), 523-529
  22. Scutari, M. (2014). Bayesian network constraint-based structure learning algorithms: Parallel and optimised implementations in the bnlearn r package. arXiv preprint arXiv:1406.7648.
  23. Sherif, F. F., Zayed, N. & Fakhr, M. (2015). Discovering Alzheimer genetic biomarkers using Bayesian networks. Advances in bioinformatics, 2015.
  24. Stalteri, M. A. & Harrison, A. P. (2007). Interpretation of multiple probes sets mapping to the same gene in Affymetrix GeneChips. BMC Bioinformatics, 8(1), 13.
  25. Stingo, F. C., Swartz, M. D. & Vannucci, M. (2015). A Bayesian approach to identify genes and gene-level SNP aggregates in a genetic analysis of cancer data. Statistics and Its Interface, 8(2), 137-151.
  26. Verardo, L., Lopes, M., Wijga, S., Madsen, O., Silva, F., Groenen, M., Knol, E., Lopes, P. & Guimarães, S. (2016). After genome-wide association studies: Gene networks elucidating candidate genes divergences for number of teats across two pig populations. Journal of Animal Science, 94(4), 1446-1458.
  27. Weber, K. L., Welly, B. T., Van Eenennaam, A. L., Young, A. E., Porto-Neto, L. R., Reverter, A. & Rincon, G. (2016). Identification of gene networks for residual feed intake in Angus cattle using genomic prediction and RNA-seq. PloS One, 11(3), e0152274.