Modulating the effects of stress induced by corticosterone injection using probiotic administration in broiler chicks

Document Type : Research Paper


1 Ph. D. Candidate, Department of Animal science, Faculty of Agriculture, University of Guilan, Rasht, Iran

2 Associate Professor, Department of Animal science, Faculty of Agriculture, University of Guilan, Rasht, Iran

3 Associate Professor, Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran


This experiment was conducted in a completely randomized design with 2×3 factorial arrangement with two levels of corticosterone injections (oil injection and corticosterone injections) and three levels of probiotic supplementation (1- without probiotic, 2 and 3- supplemented with 0.8×105 and 1.6×105 spores of Bacillus subtilis per gram of feed, respectively) to modulate stress induced by corticosterone injection using probiotic admimistration in broiler chicks. Each of 6 treatments replicated 4 times of 12birds per replicate.At 7 to 9 and 25 to 27 days of age, the chicks received one of the subcutaneous injections corn oil with/without CORT at 2 mg/kg BW twice per day. Corticosterone injection decreased the relative weight of intestine and its length at 28 and 42 days of ages (P<0.05). Relative weight of the breast was lower in corticosterone injected groups than in the oil injection groups (P<0.05). Villi height of different parts of the intestine and antibody levels against Newcastle disease decreased significantly with corticosterone injection.Adding probiotics increased the length of the villi and relative weight of the intestine. Feed to gain efficiency and average daily weight gain increased significantly in response to probiotic supplementation (P<0.05). Total coliforms and lactobacillus populations were not affected by corticosterone injections, but adding probiotic had a significant effect on ileal populations of these bacteria (P<0.05). Overall, the results of this study indicate a positive effect of probiotic on performance and intestine structure of broiler chicks under stress induced by corticosterone injection.


  1. Awad, W., Ghareeb, K., Abdel-Raheem, S. & Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88(1), 49-56.
  2. Cengiz, Ö., Köksal, B. H., Tatlı, O., Sevim, Ö., Ahsan, U., Üner, A. G., Yakan, A. (2015). Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers. Poultry Science, 94(10), 2395-2403.
  3. Cheng, T. K., Hamre, M. L. & Coon, C. N. (1997). Effect of environmental temperature, dietary protein, and energy levels on broiler performance. Journal of Applied Poultry Research, 6(1), 1-17.
  4. Deniz, G., Orman, A., Cetinkaya, F., Gencoglu, H., Meral, Y. & Turkmen, I. (2011). Effects of probiotic (Bacillus subtilis DSM 17299) supplementation on the caecal microflora and performance in broiler chickens. Revue Méd. Vét, 162(11), 538-545.
  5. Dong, H., Lin, H., Jiao, H., Song, Z., Zhao, J. & Jiang, K. (2007). Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 147(1), 189-195.
  6. Fathi, M., Ebeid, T., Al-Homidan, I., Soliman, N. & Abou-Emera, O. (2017). Influence of probiotic supplementation on immune response in broilers raised under hot climate. British poultry Science, 58(5), 512-516.
  7. Fernandes, B., Martins, M., Mendes, A., Milbradt, E., Sanfelice, C., Martins, B., Bresne, C. (2014). Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Revista Brasileira de Ciência Avícola, 16(4), 417-424.
  8. Gao, Z., Wu, H., Shi, L., Zhang, X., Sheng, R., Yin, F. & Gooneratne, R. (2017). Study of Bacillus subtilis on growth performance, nutrition metabolism and intestinal microflora of 1 to 42 d broiler chickens. Animal Nutrition, 3(2), 109-113.
  9. Gómez, S., Angeles, M., Mojica, M. & Jalukar, S. (2012). Combination of an enzymatically hydrolyzed yeast and yeast culture with a direct-fed microbial in the feeds of broiler chickens. Asian-Australasian Journal of Animal Sciences, 25(5), 665.
  10. Harrington, D., Sims, M. & Kehlet, A. (2015). Effect of Bacillus subtilis supplementation in low energy diets on broiler performance. Journal of Applied Poultry Research, 25(1), 29-39.
  11. Hatab, M., Elsayed, M. & Ibrahim, N. (2016). Effect of some biological supplementation on productive performance, physiological and immunological response of layer chicks. Journal of Radiation Research and Applied Sciences, 9(2), 185-192.
  12. Hu, X. & Guo, Y. (2008). Corticosterone administration alters small intestinal morphology and function of broiler chickens. Asian-Australasian Journal of Animal Sciences, 21(12), 1773-1778.
  13. Hu, X., Guo, Y., Huang, B., Bun, S., Zhang, L., Li, J., Jiao, P. (2010). The effect of glucagon-like peptide 2 injection on performance, small intestinal morphology, and nutrient transporter expression of stressed broiler chickens 1. Poultry Science, 89(9), 1967-1974.
  14. Hu, X. F., Guo, Y. M., Li, J. H., Yan, G. L., Bun, S. & Huang, B. Y. (2011). Effects of an early lipopolysaccharide challenge on growth and small intestinal structure and function of broiler chickens. Canadian Journal of Animal Science, 91(3), 379-384.
  15. Jeong, J. & Kim, I. (2014). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Science, 93(12), 3097-3103.
  16. Jin, L., Ho, Y., Abdullah, N. & Jalaludin, S. (2000). Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poultry Science, 79(6), 886-891.
  17. Kehlet, A., da Silva, L., Salguero, S., Albino, L., Rostagno, H. & Harrington, D. (2014). The use of GalliPro® to improve broiler performance in energy-reduced diets. Paper presented at the Proc. Annual Meeting Poultry Sci. Assoc., Corpus Christi, TX, USA.
  18. Laganá, C., Ribeiro, A. M. L., Kessler, A. d. M., Kratz, L. R. & Pinheiro, C. C. (2007). Effects of the reduction of dietary heat increment on the performance, carcass yield, and diet digestibility of broilers submitted to heat stress. Revista Brasileira de Ciência Avícola, 9(1), 45-51.
  19. Lara, L. J. & Rostagno, M. H. (2013). Impact of heat stress on poultry production. Animals, 3(2), 356-369.
  20. Latorre, J., Hernandez-Velasco, X., Kallapura, G., Menconi, A., Pumford, N., Morgan, M., Téllez, G. (2014). Evaluation of germination, distribution, and persistence of Bacillus subtilis spores through the gastrointestinal tract of chickens. Poultry Science, 93(7), 1793-1800.
  21. Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R. & Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poultry Science, 91(1), 265-270.
  22. Lin, H., Decuypere, E. & Buyse, J. (2004). Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(4), 737-744.
  23. Lin, H., Sui, S., Jiao, H., Buyse, J. & Decuypere, E. (2006). Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(3), 400-405.
  24. Liu, F., Yin, J., Du, M., Yan, P., Xu, J., Zhu, X. & Yu, J. (2009). Heat-stress-induced damage to porcine small intestinal epithelium associated with downregulation of epithelial growth factor signaling. Journal of Animal Science, 87(6), 1941-1949.
  25. Mahmoud, K., Obeidat, B., Al-Sadi, M. & Hatahet, S. R. (2017). Effect of Bacillus subtilis supplementation and dietary crude protein level on growth performance and intestinal morphological changes of meat type chicken. Livestock Science, 195, 99-104.
  26. Mehaisen, G. M., Eshak, M. G., Elkaiaty, A. M., Atta, A.-R. M., Mashaly, M. M. & Abass, A. O. (2017). Comprehensive growth performance, immune function, plasma biochemistry, gene expressions and cell death morphology responses to a daily corticosterone injection course in broiler chickens. PloS One, 12(2), e0172684.
  27. Mokhtari, R., Yazdani, A. R., Rezaei, M. & Ghorbani, B. (2010). The effects of different growth promoters on performance and carcass characteristics of broiler chickens. Journal of Animal and Veterinary Advances, 9(20), 2633-2639.
  28. Molnár, A., Podmaniczky, B., Kürti, P., Tenk, I., Glávits, R., Virág, G. & Szabo, Z. (2011). Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. British Poultry Science, 52(6), 658-665.
  29. Mustafa, M. Y., Muneer, M. A., Anjum, A. A. & Din-Ahamd, M. (2010). Influence of stocking density on immune response of broilers against newcastle disease virus. Pakistan Journal of Life and Social Sciences, 8(1), 7-10.
  30. Ognik, K. & Sembratowicz, I. (2012). Stress as a factor modifying the metabolism in poultry. A review. Annales Universitatis Mariae Curie-Skłodowska. Sectio EE: Zootechnica, 30(2).
  31. Olnood, C. G., Beski, S. S., Choct, M. & Iji, P. A. (2015). Novel probiotics: Their effects on growth performance, gut development, microbial community and activity of broiler chickens. Animal Nutrition, 1(3), 184-191.
  32. Olnood, C. G., Beski, S. S., Iji, P. A. & Choct, M. (2015). Delivery routes for probiotics: Effects on broiler performance, intestinal morphology and gut microflora. Animal Nutrition, 1(3), 192-202.
  33. Opalinski, M., Maiorka, A., Dahlke, F., Cunha, F., Vargas, F. & Cardozo, E. (2007). On the use of a probiotic (Bacillus subtilis-strain DSM 17299) as growth promoter in broiler diets. Revista Brasileira de Ciência Avícola, 9(2), 99-103.
  34. Porto, M., Givisiez, P., Saraiva, E., Costa, F., Moreira Filho, A., Andrade, M., ... Guerra, R. (2015). Glutamic acid improves body weight gain and intestinal morphology of broiler chickens submitted to heat stress. Revista Brasileira de Ciência Avícola, 17(3), 355-362.
  35. Puvadolpirod, S. & Thaxton, J. (2000). Model of physiological stress in chickens 4. Digestion and metabolism 1 2. Poultry Science, 79(3), 383-390.
  36. Quinteiro-Filho, W., Ribeiro, A., Ferraz-de-Paula, V., Pinheiro, M., Sakai, M., Sá, L., ... Palermo-Neto, J. (2010). Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 89(9), 1905-1914.
  37. Rahimi, M. (2009). Effects of probiotic supplementation on performance and humoral immune response of broiler chickens. Book of proceedings, 2nd Mediterranean Summit of WPSA, 67-69.
  38. Rahman, M. M. & Sarker, R. D. a. M. N. (2017). Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chickens. Annals of Veterinary and Animal Science, 4(3), 94-98.
  39. Rajput, I. R., Li, Y. L., Xu, X., Huang, Y., Zhi, W. C., Yu, D. Y. & Li, W. (2013). Supplementary effects of Saccharomyces boulardii and Bacillus subtilis B10 on digestive enzyme activities, antioxidation capacity and blood homeostasis in broiler. International Journal of Agriculture & Biology, 15(2), 231-237.
  40. Reis, M., Fassani, E., Júnior, A. G., Rodrigues, P., Bertechini, A., Barrett, N., Schmidt, C. (2017). Effect of Bacillus subtilis (DSM 17299) on performance, digestibility, intestine morphology, and pH in broiler chickens. Journal of Applied Poultry Research, 26(4), 573-583.
  41. Sadeghi, A. A., Shawrang, P. & Shakorzadeh, S. (2015). Immune response of salmonella challenged broiler chickens fed diets containing Gallipro®, a Bacillus subtilis probiotic. Probiotics and Antimicrobial Proteins, 7(1), 24-30.
  42. Santin, E., Maiorka, A., Polveiro, W., Paulillo, A., Laurentiz, A., Borges, S. & Fischer da Silva, A. (2003). Effect of environmental temperature on immune response of broilers. Journal of Applied Poultry Research, 12(3), 247-250.
  43. Seifi, K., Karimi‐Torshizi, M. & Deldar, H. (2018). Probiotics intake from proximal or distal gastrointestinal tract: The investigation on intestinal morphology and performance of Japanese quail. Journal of Animal Physiology and Animal Nutrition, 102(1).
  44. Sen, S., Ingale, S., Kim, J., Kim, K., Kim, Y., Khong, C., Kwon, I. (2011). Effect of supplementation of Bacillus subtilis LS 1-2 grown on citrus-juice waste and corn-soybean meal substrate on growth performance, nutrient retention, caecal microbiology and small intestinal morphology of broilers. Asian-Australasian Journal of Animal Sciences, 24(8), 1120-1127.
  45. Sen, S., Ingale, S., Kim, Y., Kim, J., Kim, K., Lohakare, J., & Kwon, I. (2012). Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Research in Veterinary Science, 93(1), 264-268.
  46. Shini, S., Huff, G., Shini, A. & Kaiser, P. (2010). Understanding stress-induced immunosuppression: Exploration of cytokine and chemokine gene profiles in chicken peripheral leukocytes 1. Poultry Science, 89(4), 841-851.
  47. Siegel, H. V. & Van Kampen, M. (1984). Energy relationships in growing chickens given daily injections of corticosterone. British Poultry Science, 25(4), 477-485.
  48. Sohail, M., Hume, M., Byrd, J., Nisbet, D., Ijaz, A., Sohail, A., & Rehman, H. (2012). Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 91(9), 2235-2240.
  49. Song, J., Xiao, K., Ke, Y., Jiao, L., Hu, C., Diao, Q., Zou, X. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93(3), 581-588.
  50. Song, Z., Yuan, L., Jiao, H. & Lin, H. (2011). Effect of corticosterone on hypothalamic corticotropin-releasing hormone expression in broiler chicks (Gallus gallus domesticus) fed a high energy diet. Asian-Australasian Journal of Animal Sciences, 24(12), 1736-1743.
  51. Song, Z., Zhang, X., Zhu, L., Jiao, H. & Lin, H. (2011). Dexamethasone alters the expression of genes related to the growth of skeletal muscle in chickens (Gallus gallus domesticus). Journal of Molecular Endocrinology, 46(3), 217-225.
  52. Tuekam, T., Miles, R. & Butcher, G. (1994). Performance and humoral immune response in heat-stressed broilers fed an ascorbic acid supplemented diet. Journal of Applied Animal Research, 6(2), 121-130.
  53. Vargas-Rodriguez, L., Duran-Melendez, L., Garcia-Masias, J., Arcos-Garcia, J., Joaquin-Torres, B. & Ruelas-Inzunza, M. (2013). Effect of probiotic and population density on the growth performance and carcass characteristics in broiler chickens. International Journal of Poultry Science, 2, 390-395.
  54. Virden, W. & Kidd, M. (2009). Physiological stress in broilers: Ramifications on nutrient digestibility and responses 1 2. Journal of Applied Poultry Research, 18(2), 338-347.
  55. Wang, S., Ni, Y., Guo, F., Fu, W., Grossmann, R. & Zhao, R. (2013). Effect of corticosterone on growth and welfare of broiler chickens showing long or short tonic immobility. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(3), 537-543.
  56. Wang, X., Farnell, Y., Peebles, E., Kiess, A., Wamsley, K. & Zhai, W. (2016). Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poultry Science, 95(6), 1332-1340.
  57. Wang, Y. & Gu, Q. (2010). Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers. Research in Veterinary Science, 89(2), 163-167.
  58. Yang, J., Liu, L., Sheikhahmadi, A., Wang, Y., Li, C., Jiao, H., Song, Z. (2015). Effects of corticosterone and dietary energy on immune function of broiler chickens. PloS One, 10(3), e0119750.
  59. Zaghari, M., Derakhshani Diba, M., Moravej, H. & Zahroojian, N. (2017). Estimation of metabolizable energy equivalency of Bacillus Subtilis spore for male broiler chickens. Journal of Livestock Science and Technologies, 5(1), 9-18.
  60. Zaghari, M., Zahroojian, N., Riahi, M. & Parhizkar, S. (2015). Effect of Bacillus subtilis spore (GalliPro®) nutrients equivalency value on broiler chicken performance. Italian Journal of Animal Science, 14(1), 3555.
  61. Zhang, J., Xie, Q., Ji, J., Yang, W., Wu, Y., Li, C., Bi, Y. (2012). Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poultry Science, 91(11), 2755-2760.
  62. Zhang, L., Zhang, L., Zeng, X., Zhou, L., Cao, G. & Yang, C. (2016). Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88. Journal of Animal Science and Biotechnology, 7(1), 3.