REFERNSES
Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Arif, M., Taha, A. E., & Noreldin, A. E. (2019). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. Journal of thermal biology, 79, 120-134.
Arthington, J. D., Corah, L. R., Minton, J. E., Elsasser, T. H., & Blecha, F. (1997). Supplemental dietary chromium does not influence ACTH, cortisol, or immune responses in young calves inoculated with bovine herpesvirus-1. Journal of Animal Science, 75(1), 217-223.
Bach, A., Huntington, G. B., Calsamiglia, S., & Stern, M. D. (2000). Nitrogen metabolism of early lactation cows fed diets with two different levels of protein and different amino acid profiles. Journal of Dairy Science, 83(11), 2585-2595.
Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V. P., Pragna, P., Lees, A. M., & Sejian, V. (2019). The impact of heat stress on the immune system in dairy cattle: A review. Research in Veterinary Science, 126, 94-102.
Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of Dairy Science, 85(9), 2173-2179.
Bernhard, B. C., Burdick, N. C., Rounds, W., Rathmann, R. J., Carroll, J. A., Finck, D. N., & Johnson, B. J. (2012). Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide challenge–. Journal of Animal Science, 90(11), 3879-3888.
Besong, S., Jackson, J. A., Trammell, D. S., & Akay, V. (2001). Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Journal of Dairy Science, 84(7), 1679-1685.
Broucek, J., Kisac, P., & Uhrincat, M. (2009). Effect of hot temperatures on the hematological parameters, health and performance of calves. International Journal of Biometeorology, 53, 201-208.
Burton, J. L., Mallard, B. A., & Mowat, D. N. (1993). Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. Journal of Animal Science, 71(6), 1532-1539.
Cao, J., Guo, F., Zhang, L., Dong, B., & Gong, L. (2014). Effects of dietary Selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. Journal of Animal Science and Biotechnology, 5(1), 1-7.
Caroprese, M., Marzano, A., Entrican, G., Wattegedera, S., Albenzio, M., & Sevi, A. (2009). Immune response of cows fed polyunsaturated fatty acids under high ambient temperatures. Journal of Dairy Science, 92(6), 2796-2803.
Chang, X., Mallard, B. A., & Mowat, D. N. (1996). Effects of chromium on health status, blood neutrophil phagocytosis and in vitro lymphocyte blastogenesis of dairy cows. Veterinary Immunology and Immunopathology, 52(1-2), 37-52.
Chang, X., & Mowat, D. N. (1992). Supplemental chromium for stressed and growing feeder calves. Journal of Animal Science, 70(2), 559-565.
Choi, S. J., Oh, J. M., & Choy, J. H. (2010). Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 10(4), 2913-2916.
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: a review. Vet World 9: 260–268.
Depew, C. L., Bunting, L. D., Fernandez, J. M., Thompson Jr, D. L., & Adkinson, R. W. (1998). Performance and metabolic responses of young dairy calves fed diets supplemented with chromium tripicolinate. Journal of Dairy Science, 81(11), 2916-2923.
Domínguez-Vara, I. A., González-Muñoz, S. S., Pinos-Rodríguez, J. M., Bórquez-Gastelum, J. L., Bárcena-Gama, R., Mendoza-Martínez, G. & Landois-Palencia, L. L. (2009). Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Animal Feed Science and Technology, 152(1-2), 42-49.
Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(12), 4583-4592.
Faldyna, M., Pechova, A., & Krejci, J. (2003). Chromium supplementation enhances antibody response to vaccination with tetanus toxoid in cattle. Journal of Veterinary Medicine, Series B, 50(7), 326-331.
Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., ... & Lynch, G. S. (2012). Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484(7394), 394-398.
Gentry, L. R., Fernandez, J. M., Ward, T. L., White, T. W., Southern, L. L., Bidner, T. D. & Sahlu, T. (1999). Dietary protein and chromium tripicolinate in Suffolk wether lambs: effects on production characteristics, metabolic and hormonal responses, and immune status. Journal of Animal Science, 77(5), 1284-1294.
Ghasemi Kasmaei, F., & Safari Manjegh Tappeh, S. (2022). Comparison of the effect of organic, inorganic and nano-chromium supplements on growth performance and blood parameters of Mehraban fattening lambs. International Journal of Plant, Animal and Environmental Science, 14(3), 95-102.
Ghorbani, A., Sadri, H., Alizadeh, A. R., & Bruckmaier, R. M. (2012). Performance and metabolic responses of Holstein calves to supplemental chromium in colostrum and milk. Journal of Dairy Science, 95(10), 5760-5769.
Gong, J., & Xiao, M. (2016). Selenium and antioxidant status in dairy cows at different stages of lactation. Biological Trace Element Research, 171, 89-93.
Haldar, S., Mondal, S., Samanta, S., & Ghosh, T. K. (2009). Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against pestedespetitsruminants in dwarf Bengal goats (Capra hircus). Animal, 3(2), 209-217.
Harvey, K. M., Cooke, R. F., & Marques, R. D. S. (2021). Supplementing trace minerals to beef cows during gestation to enhance productive and health responses of the offspring. Animals, 11(4), 1159.
Hassan, F. A., Mahmoud, R., & El-Araby, I. E. (2017). Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Veterinary Journal, 45(3), 238-249.
Hill, E. K., & Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8(1), 1-13.
Kafilzadeh, F., Shabankareh, H. K., & Targhibi, M. R. (2012). Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biological Trace Element Research, 149, 42-49.
Kargar, S., Mousavi, F., & Karimi-Dehkordi, S. (2018). Effects of chromium supplementation on weight gain, feeding behaviour, health and metabolic criteria of environmentally heat-loaded Holstein dairy calves from birth to weaning. Archives of Animal Nutrition, 72(6), 443-457.
Kargar, S., Mousavi, F., Karimi-Dehkordi, S., & Ghaffari, M. H. (2018). Growth performance, feeding behavior, health status, and blood metabolites of environmentally heat-loaded Holstein dairy calves fed diets supplemented with chromium. Journal of Dairy Science, 101(11), 9876-9887.
Kegley, E. B., Spears, J. W., & Brown Jr, T. T. (1996). Immune response and disease resistance of calves fed chromium nicotinic acid complex or chromium chloride. Journal of Dairy Science, 79(7), 1278-1283.
Kegley, E. B., Spears, J. W., & Brown Jr, T. T. (1997). Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. Journal of Animal Science, 75(7), 1956-1964.
Kegley, E. B., & Spears, J. W. (1995). Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. Journal of Animal Science, 73(9), 2721-2726.
Keshri, A., Roy, D., Kumar, V., Kumar, M., Kushwaha, R., Vaswani, S. & Choudhury, S. (2021). Effect of chromium supplementation on rhythmic alterations in growth performance and nutrient utilization of growing cattle during heat stress. Biological Rhythm Research, 52(7), 1064-1072.
Khansari, D. N., Murgo, A. J., & Faith, R. E. (1990). Effects of stress on the immune system. Immunology Today, 11, 170-175.
Kumar, M., Kaur, H., Deka, R. S., Mani, V., Tyagi, A. K., & Chandra, G. (2015). Dietary inorganic chromium in summer-exposed buffalo calves (Bubalus bubalis): effects on biomarkers of heat stress, immune status, and endocrine variables. Biological Trace Element Research, 167, 18-27.
Kumar, N., Garg, A. K., Dass, R. S., Chaturvedi, V. K., Mudgal, V., & Varshney, V. P. (2009). Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Animal Feed Science and Technology, 153(1-2), 77-87.
Lashkari, S., Habibian, M., & Jensen, S. K. (2018). A review on the role of chromium supplementation in ruminant nutrition—effects on productive performance, blood metabolites, antioxidant status, and immunocompetence. Biological Trace Element Research, 186, 305-321.
Marcén, M., Ruiz, V., Serrano, M. J., Condón, S., & Mañas, P. (2017). Oxidative stress in E. coli cells upon exposure to heat treatments. International Journal of Food Microbiology, 241, 198-205.
Meyer, A. M., Reed, J. J., Neville, T. L., Thorson, J. F., Maddock-Carlin, K. R., Taylor, J. B., ... & Caton, J. S. (2011). Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. Journal of animal science, 89(5), 1627-1639.
Moeini, M. M., Kaki Soumar, S., Hozhabri, F., & Nikousefat, Z. (2018). The effect of black seed with chromium-methionine or zinc-methionine on the blood parameters, antioxidant capacity and performance of Sanjabi lambs under transport stress. Journal Ruminat Research, 6(1), 85-100. (In Persian).
Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185, 1-22.
Moonsie-Shageer, S., & Mowat, D. N. (1993). Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. Journal of Animal Science, 71(1), 232-238.
Moreira, P. S. A., Palhari, C., & Berber, R. C. A. (2020). Dietary chromium and growth performance animals: a review. Scientific Electronic Archives, 13(7), 59-66.
Mousaie, A., Valizadeh, R., Naserian, A. A., Heidarpour, M., & Mehrjerdi, H. K. (2014). Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of Baluchi ewe lambs. Biological Trace Element Research, 162, 113-123.
Mousavi, F., Karimi-Dehkordi, S., Kargar, S., & Ghaffari, M. H. (2019). Effect of chromium supplementation on growth performance, meal pattern, metabolic and antioxidant status and insulin sensitivity of summer-exposed weaned dairy calves. Animal, 13(5), 968-974.
Mousavi, F., Karimi-Dehkordi, S., Kargar, S., & Khosravi-Bakhtiari, M. (2019). Effects of dietary chromium supplementation on calf performance, metabolic hormones, oxidative status, and susceptibility to diarrhea and pneumonia. Animal Feed Science and Technology, 248, 95-105.
Arruda, A. G., Godden, S., Rapnicki, P., Gorden, P., Timms, L., Aly, S. S & Champagne, J. (2013). Randomized noninferiority clinical trial evaluating 3 commercial dry cow mastitis preparations: I. Quarter-level outcomes. Journal of Dairy Science, 96(7), 4419-4435.
Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5(1), 25-44.
National Research Council. (2007). Nutrient Requirements of Small Ruminants. Sheep, goats, cervide and new world camelids. Washington, DC: National Academy Press.
Ohh, S. J., & Lee, J. Y. (2005). Dietary chromium-methionine chelate supplementation and animal performance. Asian-Australasian Journal of Animal Sciences, 18(6), 898-907.
Pantelić, M., Jovanović, L. J., Prodanović, R., Vujanac, I., Đurić, M., Ćulafić, T. & Kirovski, D. (2018). The impact of the chromium supplementation on insulin signalling pathway in different tissues and milk yield in dairy cows. Journal of Animal Physiology and Animal Nutrition, 102(1), 41-55.
Phan, T. T. V., Huynh, T. C., Manivasagan, P., Mondal, S., & Oh, J. (2019). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials, 10(1), 66.
Qi, Z., Gao, J., Zhao, C., Zhang, Y., Liu, Y., Wang, X., & Li, H. (2018). PSXVII-30 Effects of dietary supplementation of yeast chromium and dihydropyridine on serum biochemical indices and HSP70 mRNA expression of lactating dairy cows in summer. Journal of Animal Science, 96(suppl_3), 448-449.
Regoli, F., & Principato, G. (1995). Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquatic Toxicology, 31(2), 143-164.
Robinson, J. J., McDonald, I., Fraser, C., & Crofts, R. M. J. (1977). Studies on reproduction in prolific ewes: I. Growth of the products of conception. The Journal of Agricultural Science, 88(3), 539-552.
Sahin, K., Sahin, N., & Kucuk, O. (2003). Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32 C). Nutrition Research, 23(2), 225-238.
SAS. (2004). Institute. User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC.
Sordillo, L. M., & Aitken, S. L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary Immunology and Immunopathology, 128(1-3), 104-109.
Spears, J. W. (2019). Boron, chromium, manganese, and nickel in agricultural animal production. Biological Trace Element Research, 188(1), 35-44.
Spears, J. W. (2000). Micronutrients and immune function in cattle. Proceedings of the nutrition society, 59(4), 587-594.
Stahlhut, H. S., Whisnant, C. S., Lloyd, K. E., Baird, E. J., Legleiter, L. R., Hansen, S. L., & Spears, J. W. (2006). Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Animal Feed Science and Technology, 128(3-4), 253-265.
Subiyatno, A., Mowat, D. N., & Yang, W. Z. (1996). Metabolite and hormonal responses to glucose or propionate infusions in periparturient dairy cows supplemented with chromium. Journal of Dairy Science, 79(8), 1436-1445.
Sun, L. L., Gao, S. T., Wang, K., Xu, J. C., Sanz-Fernandez, M. V., Baumgard, L. H., & Bu, D. P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of Dairy Science, 102(1), 311-319.
Sun, P., Wang, J., Liu, W., Bu, D. P., Liu, S. J., & Zhang, K. Z. (2017). Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. Journal of Dairy Science, 100(12), 9602-9610.
Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T. & Paoletti, S. (2009). Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules, 10(6), 1429-1435.
Uyanik, F. (2001). The effects of dietary chromium supplementation on some blood parameters in sheep. Biological Trace Element Research, 84, 93-101.
WANG, H. F., YANG, W. R., WANG, Y. X., YANG, Z. B., & CUI, Y. H. (2011). The study on the effects of Chinese herbal mixtures on growth, activity of post-ruminal digestive enzymes and serum antioxidant status of beef cattle. Agricultural Sciences in China, 10(3), 448-455.
Wang, M. Q., Xu, Z. R., Zha, L. Y., & Lindemann, M. D. (2007). Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Animal Feed Science and Technology, 139(1-2), 69-80.
Yan, L. J., Christians, E. S., Liu, L., Xiao, X., Sohal, R. S., & Benjamin, I. J. (2002). Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. The EMBO Journal, 21(19), 5164-5172.
Yari, M., Nikkhah, A., Alikhani, M., Khorvash, M., Rahmani, H., & Ghorbani, G. R. (2010). Physiological calf responses to increased chromium supply in summer. Journal of Dairy Science, 93(9), 4111-4120.
Yuan, K., Vargas-Rodriguez, C. F., Mamedova, L. K., Muckey, M. B., Vaughn, M. A., Burnett, D. D., ... & Bradford, B. J. (2014). Effects of supplemental chromium propionate and rumen-protected amino acids on nutrient metabolism, neutrophil activation, and adipocyte size in dairy cows during peak lactation. Journal of Dairy Science, 97(6), 3822-3831.
Zhang, F. J., Weng, X. G., Wang, J. F., Zhou, D., Zhang, W., Zhai, C. C., ... & Zhu, Y. H. (2014). Effects of temperature–humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows. Journal of Animal Science, 92(7), 3026-3034.