Determining the amount of changes in the main components of honey ‎bee venom in three seasons and several geographical areas of Iran

Document Type : Research Paper


1 Department of Animal Science Faculty of Agricultural Engineering, Karaj, Iran

2 Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology ‎‎(NIGEB), Tehran, Iran‎


Honey bees are small insects with many useful products. Venom is one of these products with therapeutic benefits and high commercial value. Many factors affect the bee venom and its main components, namely Melittin, Apamine and Phospholipase A2. This study investigates the effect of seasonal and geographical location on the venom composition in 8 cities, during three seasons of spring, summer and autumn, in a completely randomized design with 4 replications(hives). Analysis of venom samples from the target areas in different seasons by HPLC showed that the mentioned components, other than apamine (correlation=0.339), had no correlation with temperature. The mean amount of Protein, Melittin and Phospholipase A2 of the treatments did not differ significantly during the 3 seasons (p>0.05). The mean percentage of melittin (63.15 %) and phospholipase A2 (8.19 %) in spring; apamine (4.03 %) and protein (48.89 µg/100mg) were maximum in summer. The highest amount of Protein and Apamin in the venom was related to karaj (50.28% and 4.33% respectively), the highest amount of Melittin in khoramabad city and the highest Phospholipase A2 was in birjand city. The effects of season have on venom components through temperature can be in addition to the direct effect on honey bees and venom production glands, through the effect on vegetation of area or the presence of seasonal changes in the venom components in addition to the effect of geographical location, a reflection of the difference in vegetation.


Abreu, R. M. M., Silva de Moraes, R. L. M. & Malaspina, O. (2000). Histological aspects and protein content of Apis mellifer L. Worker venom glands: the effect of electrical shocks in summer and winter. Journal of Venomous Animals and Toxins, 6 (1).
Abusabbah, M., Lau, W. H., Mahmoud, M. E., Salih, A. M. & Omar, D. (2016). Prospects of using carbohydrates as supplemented-diets and protein rich mixture as alternative-diet to improve the quality of venom produced by Apis cerana L. Journal of Entomology and Zoology Studies, 4(3), 23-26.
Anwar, A.E. (2000). Further studies on bee venom extraction and its biological properties. Ph.D. Thesis, Faculty of Agriculture Menoufiya University, Egypt.
Asthana, N., Yadav, S.P., & Ghosh, J.K. (2004). Dissection of antibacterial and toxic activity of melittin-a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J. Biol. Chem., 279, 55042-55050.
Bachmayer, H., Krell, G. & Suchamec, E. (1972). Synthesis of promelittin and melittin in the venom gland of queen and worker bees: patterns observed during maturation. Journal of insect Physiology, 18(8), 1515-1521.
Baracchi, D. & Turillazzi, S. (2010). Differences in venom and cuticular peptides in individuals of Apis mellifera (Hymenoptera: Apidae) determined by MALDI-TOF MS. Journal insect Physiology, 56(4), 366-75.
Bogdanov, S. (2016). Bee Venom: production, composition and quality. In: The bee venom Book, Chapter 1, Muehlethurnen, Switzerland.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of Protein-Dye binding. Analytical biochemistry, 72(1-2), 248-254.
Chang, D., Olenzek, A. M. & Duda Jr, T. F. (2015). Effects of geographical heterogeneity in species interactions on the evolution of venom genes. Proceedings of the Royal Society B: Biological Sciences, 282: 20141984.
Chen, J., Guan, S., Sun, W. & Fu, H. (2016). Melittin, the major pain-producing substance of bee venom. Journal of Neuroscience Bulletin, 32, 265-272.
Daneels, E. L., Vaerenbergh, M. V., Debyser, G., Devreese, B. & De  Graaf, D. C. (2015). Honeybee venom proteome profile of queen and winter bees as determined by a mass spectrometric approach. Toxins, 7(11), 4468-83.
Dong, J., Ying, B., Huang, S., Ma, S., Long, P., Tu, X., Yang, W., Wu, ZH., Chen, W. & Miao, X. (2015). High-performance liquid chromatography combined with intrinsic fluorescence detection to analysis melittin in individual honeybee (Apis mellifera) venom sac. Journal of Chromatography B, 1002, 139-143.
El-Ashhab, K. (2001). Studies on bee venom in honey bee colony., M.Sc. Thesis, Faculty of Agriculture, Moshtohor, Zagazig University, Egypt.
El-Bahnasy, S. A., Mahfouz, H. M., El-Shibiny, A.A. & El-Bassiony, M.N. (2017). Effect of some factors on honey bee venom production from different strains. SINAI Journal of Applied Sciences, ISSN: 2314-6079, 6(1), 59-66.
El feel, M. A. (2017). Improve of honey bee venom productivity in commercial apiaries. Ph.D. Thesis, Faculty of Agriculture, Cairo university, Egypt, 135 pp.
Elhosseny E. Nowar, (2016). Venom glands parameters, venom production and composition of honeybee aps mellifera L. Affected by substitute feeding. Middle east journal of agriculture research, 5(4), 333-339.
El-Shaarawy, K.O., Zakariam, M.E., Azza Taufik, A. & El-Shemy, A.A.M. (2007). Effect of different bee venom collection periods using electrical shock device on some venom characteristic and honey bee colonies activities. Mansoura University Journal of Agricultural Sciences, 32(6), 4769-4775.
Eze, O. B. L., Nwodo, O. F. C., Ogugua, V. N., (2016). Therapeutic effect of honey bee venom, Journal of pharmaceutical,chemical and biological, Pages 48-53, ISSN: 2348-7658.
Falco, A., Barrajon-Catalan, E., Menendez-Gutierrez, M.P., Coll, J., Micol, V., & Estepa, A. (2013). Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy, Antiviral Res., 97, 218-221.
Ferreira Junior, R. S. F., Sciani, J. M., Marques-Porto, R., Junior, A. L., O. Orsi, R., Barraviera, B. & Pimenta, D. C. (2010). Africanized honey bee (Apis mellifera) venom profiling: Seasonal variation of melittin and phospholipase A2 levels. Toxicon, 56(3), 355-362.
Ferreira Resende, V. M., Vasilj, A., Santos, K. S., Palma, M. S. & Shevchenko, A. (2013). Proteome and phosphoproteome of Africanized and European honeybee venoms. Proteomics, 13(17), 2638-2648.
Gajski, G., & Garaj-Vrhovac,V. (2013).  Melittin: a lytic peptide with anticancer properties, Environ. Toxicol. Pharmacol, 36, 697-705.
Habermann, E. (1972). Bee and wasp venoms. Science, 177(4046), 314-322.
Haggag, S. I., Abed Al-Fattah, M. A., Ewies, M. A. & El-feel, M. A. (2015). Effect of honeybee venom collection from different races on honey area. Academic Journal of Entomology, 8 (4), 190-192.
Hossein, MD. S., Shapla, U. M., Gan, S. H. & Khalil, MD. I. (2017). Impact of bee venom enzymes on diseases and immune responses. Molecules, 22(1), 25-41.
Hussein, A. E., El-Ansari, M. K. & Zahra, A. A. (2019). Effect of the honeybee hybrid and geographic region on the honey bee venom production, Journal of plant protection and pathology, 10(3), 171-176.
Ionete, R. E., Dinca, O. R., Tamaian, R. & Geana, E. I., (2013) Exploring apis mellifera venom compounds using highly efficient methods. Progress of Cryogenics and Isotopes Separation, 16(2), 89-100.
Khalafallah, E.M.A. (2012). Environmental conditions affecting bee venom production and quality at Qalyobia Govemorate. M. Sc. Thesis, Institute of environmental studies & research, Ain shams university, Egypt, 142 pp.
Kucinschi, V. Rafiroin. (1978). More effect efficient devices and techniques for collecting bee venom. Apiculcure in Romania, 53(12), 16-19.
Leluk, J., Schmidt, J. & Jones, D. (1989). Comparative studies on the protein composition of hymenopteran venom reservoirs. Toxicon,  27(1), 105-114.
Moreno, M. & Giralt, E. (2015). Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins, 7(4), 1126-1150.
Nasser, M.A. (2013). Studied on some factors affecting bee venom production. M. Sc. Thesis, Faculty of Environmental Agricultural Sciences, El-Arish, Suez Canal University, Egypt.
Nenchev, P. (2001). Bee venom yield from bee hive. Zhivotnov dni-Nauki, Mir press, 38(2), 122-124.
Neumann, W., Habermann, E. & Hansen, H. (1953). Differentiation of two hemolytic factors in bee venom. Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie and Pharmakologie, 217(2), 130-143.
Noyer, E. E., (2016). Venom glands parameters, venom production and composition of honeybee Apis mellifera L.Affected by substitute feeding. Middle east journal of agriculture, ISSN 2077-4605, 5(4), 596-603.
Nunez, V., Cid, P., Sanz, L., De La Torre, P., Angulo, Y., Lomonte, B. Gutierrez, J. M. & Calvete, J. J. (2009). Snake venomics and antivenomics of bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Peru and Ecuador suggest the occurrence of geographic varriation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, 73(1), 57-78.
Owen, M. D. & Sloley, B. D., (1988). 5-Hydroxytryptamine in the venom of the honey bee (Apis mellifera L.): variation with season and with insect age, Toxicon, 26(6), 577-581.
Owen, M. D., Pfaff, L. A., Reisman, R. E. & Wypych, J. (1990). Phospholipase A2 in venom extracts from honey bees (Apis mellifera L.) of different ages. Toxicon, 28(7), 813-820.
Owen, M. D. & Pfaff, L. A. (1995). Melittin synthesis in the venom system of the honey bee (Apis mellifera L.). Toxicon, 33(9), 1181-1188.
Pak, S. C. (2017). Health benefits and uses in medicine of bee venom. Bee Products-Chemical and biological properties, pp 287-306 Springer Science.
Rached, I.C.F.S., Castro, F.M., Guzzo, M.L., & Verissimo de Mello, S.B. (2010) Anti-inflammatory effect of bee venom on antigen-induced arthritis in rabbits: influence of endogenous glucocorticoids. J. Ethnopharmacol, 130, 175-178.
Raghuraman, H. & Chattopadhyay, A. (2007). Melittin: a membrane-active peptide with diverse function. Bioscience reports, 27(4-5), 189-223.
Sanand, R.E. & Mohanny, K.M. (2013). The efficacy of a new modified apparatus for collecting bee venom in relation to some biological aspects. Journal of american science, 9(10), 177-182.
Scaccabarozzi, D., Dods, K., Le, T. T., Gummer, J. P. A., Lussu, M., Milne, L., Campbell, T., Wafujian, B. P. & Priddis, C. (2021). Factors driving compositional diversity of Apis mellifera bee venom from a Corymbia calophylla (marri) ecosystem, Southwestern Australia. PlOS ONE 16(6), e0253838.
Schmidt, J. O. (1995). Toxicology of venoms from the honeybee genus Apis. Toxicon, 33, 917-27.