The effect of different levels of dietary Spirulina platensis ‎microencapsulated microalgae on nutrient digestibility, immune ‎response, and some blood parameters in broiler chickens

Document Type : Research Paper


1 Department of Animal Science, Research & Education Center for Agriculture and Natural Resources, East ‎Azarbaijan, Tabriz, Iran‎

2 Caspian Sea Ecology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, ‎Education and Extension Organization, Sari, Iran‎


This study was done to evaluate the microencapsulated Spirulina powder on nutrient digestibility, immune response, and some blood parameters in broiler chickens. A total of 160 one-day old Ross 308 broiler chicks (mixed-sex) were assigned to a completely randomized design with four treatments, 4 replicates, and 10 chicks in each replicate. Experimental treatments included basal diet (without additive), basal diet +0.3, 0.6 or 0.9% microencapsulated Spirulina powder. Results showed that using all the levels of dietary microencapsulated Spirulina powder increased primary antibody titer against sheep red blood cell compared to control group. Feeding microencapsulated Spirulina powder at the levels of 0.3 or 0.6% increased IgM, IgG, and total antibody titer on d 35. Treatments contained microencapsulated Spirulina powder caused lower VLDL compared to control group (P<0.05). Adding 0.6 or 0.9% microencapsulated Spirulina powder to diet decreased LDL compared to control group. The birds fed with treatment contained 0.6% microencapsulated Spirulina powder had higher level of red blood cell compared to control group. The results of the present study showed that feeding microencapsulated Spirulina powder promoted humoral immune system, decreased the levels of VLDL, LDL, and increased the percentage of red blood cell in broiler chickens.


Abouelezz, F. M. K. (2017). Evaluation of spirulina algae (Spirulina platensis) as a feed supplement for japanese quail: nutiritional effects on growth performance, egg production, egg quality, blood metabolites, sperm-egg penetration and fertility. Egyptian Poultry Science Journal, 37, 707-719.
Acamovic, T. & Brooker, J. D. (2005). Biochemistry of plant secondary metabolites and their effects in animals. Proceedings of the Nutrition Society, 64, 403-412.
Agustini, T.W., Suzery, M., Sutrisnanto, D. & Hadiyanto, W.F.M. (2015). Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environmental Sciences, 23, 282-289.
Al-Batshan, H. A., Al-Mufarrej, S. I., Al-Homaidan, A. A. & Qureshi, M. A. (2001). Enhancement of chicken macrophage phagocytic function and nitrite production by dietary Spirulina platensisImmunopharmacology and Immunotoxicology. 23, 281-289.
Ansari, MS., Hajati, H., Gholizadeh, F., Soltani, N. & Alavi, SM. (2018). The Effect of different levels of algae (Spirulina) on growth performance, intestinal morphology, gut microflora, carcass characteristics and some blood parameters in broiler chickens. Journal of Phycological Research, 2, 186-197.
AOAC. (2005). Official Methods of Analysis. 18th ed. Association of analytical chemists, AOAC international, Arlington VA.
Arefniay fomani, E. R., Mottaghitalab, M. & Ghavi-Hosseinzadeh, N. (2015). The effect of substituting soybean meal and corn with a mixture of microalgae on the performance of broiler chickens. MSc. Thesis. Faculty of Agriculture Guilan University, Iran.
Babadzhanov, A. S., Abdusamatova, N., Yusupova, F. M., Faizullaeva, N., Mezhlumyan, L. G. & Malikova, M. K. (2004). Chemical composition of spirulina platensis cultivated in Uzbekistan. Chemistry of Natural Compounds40, 276-279.
Badway, N. A. (1998). Nutrition and immune performance in poultry: Role of vitamin and Trace Minerals as Immune Boosters. Review Article. Journal of Advanced Veterinary and Animal Research, 2, 304-309.
Bartlett, J. R. & Smith, M. O. (2003). Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poultry Science, 82, 1580-1588.
Bartov, I. & Kanner, J. (1996). Effect of high levels of dietary iron, iron injection, and dietary vitamin E on the oxidative stability of turkey meat during storage. Poultry Science, 75, 1039-1046.
Belay, A. (1994). Production of high-quality Spirulina at Earthrise farms. Algal Biotechnology in the Asia-Pacific Region. 92-102.
Beutler, B. (2004). Innate immunity: an overview. Molecular Immunology, 40, 845-859.
Campbell, T. W. (1995). Avian Hematology and Cytology (Vol. 413). Ames: Iowa State University Press.
Chen, J., Jiang, Y., Ma, K. Y., Chen, F. & Chen, Z. Y. (2011). Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase. Journal of Agricultural and Food Chemistry, 59, 6790-6797.
Cheong, S. H., Kim, M. Y., Sok, D. E., Hwang, S. Y., Kim, J. H., Kim, H. R., ... & Kim, M. R. (2010). Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. Journal of Nutritional Science and Vitaminology, 56, 34-40.
Dewi, E. N., Amalia, U. & Mel, M. (2016). The Effect of different treatments to the amino acid contents of micro algae spirulina sp. Aquatic Procedia7, 59-65.
El-Khimsawy, K. A. (1985). Feed additive in poultry feeds. Dar. El-Hwda for publication. Cairo, Egypt (In Arabic).
Evans, A. M., Smith, D. L., & Moritz, J. S. (2015). Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. Journal of Applied Poultry Research, 24, 206-214.
Fenton TW & Fenton M. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science, 59, 631-634.
Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18, 499-502.
Ghaeni, M., Matinfar, A., Soltani, M., & Rabbani, M. (2011). Comparative effects of pure spirulina powder and other diets on larval growth and survival of green tiger shrimp, Peneaus semisulcatus. Iranian Journal of Fisheries Sciences, 10, 208-217.
Hajati, H. & Zaghari, M. (2019). Effects of Spirulina platensis on growth performance, carcass characteristics, egg traits and immunity response of Japanese quails. Iranian Journal of Applied Animal Science, 9, 347-357.
Hajati, H., Zaghari, M., Noori, O., Negarandeh, R. & de Oliveira, H. C. (2021). Effects of in ovo injection of microalgae on hatchability, antioxidant and immunity-related genes expression, and post-hatch performance in broilers and Japanese quails. Italian Journal of Animal Science, 20, 985-994.
Hashemipour, H., Kermanshahi, H., Golian, A. & Veldkamp, T. (2013). Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poultry Science, 92, 2059-2069.
Katayama, S., Kayahara, Y. & Watanabe, T. (2016). Enhancement of immunological responses by dietary Arthrospira platensis and possibility of field applications as alternative to antibiotics in broiler chicken. American Journal of Animal and Veterinary Science, 11, 18-24.
Khan, M., Shobha, J. C., Mohan, I. K., Naidu, M. U. R., Sundaram, C., Singh, S., ... & Kutala, V. K. (2005). Protective effect of Spirulina against doxorubicin‐induced cardiotoxicity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(12), 1030-1037.
Madkour, F. F., Kamil, A. E. W. & Nasr, H. S. (2012). Production and nutritive value of Spirulina platensis in reduced cost media. The Egyptian Journal of Aquatic Research, 38, 51-57.
Male, D. J., Brostoff, D. Roth & Roitt, I. (2006). Immunology. 7th Edn., Mosby Elsevier, Missouri.
Mao, T. K., Van de Water, J. & Gershwin, M. E. (2000). Effect of Spirulina on the secretion of cytokines from peripheral blood mononuclear cells. Journal of Medicinal Food, 3, 135-140.
Mariey, Y.A., Samak, H.R. & Ibrahem, M.A. (2012). Effect of using Spirulina platensis algae as a feed additive for poultry diet: 1- productive and reproductive performances of local laying hens. Egyptian Poultry Science Journal, 32, 201-215.
Mariey, Y.A., Samak, H.R., Abou-Khashba, H.A., Sayed, M.A.M. & Abou-Zeid, A.E. (2014). Effect of using Spirulina platensis algae as a feed additive for poultry diets: 2-productive performance of broiler. Egyptian Poultry Science, 34, 245-258.
Marques de Assis, L., Machado, A.R., De Souza, A., Costa, J.A.V. & Souza, L.A. (2014). Development and characterization of nanovesicles containing phenolic compounds of microalgae Spirulina Strain LEB-18 and chlorella pyrenoidosa. Advances in Materials Physics and Chemistry, 4, 6-12.
Nagaoka, S., Shimizu, K.,  Kaneko, H., Shibayama, F., Morikawa, K.,  Kanamaru, Y., Otsuka, A., Hirahashi, T. & Kato, T. A. (2005). Novel protein C-Phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. Journal of Nutrition, 135, 2425-2430.
Nysather, J.O., Katz, A.E. & Lenth, J.L. (1976). The immune system: It development and functions. American Journal of Nursing, 76, 1614-1618.
Park, J. H., Lee, S. I. & Kim, I. H. (2018). Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poultry Science, 97, 2451-2459.
Park, J. H., Upadhaya, S. D. & Kim, I. H. (2015). Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Australasian Journal of Animal Sciences, 28, 391.
Pinho, E., Grootveld, M., Soares, G. & Henriques, M. (2014). Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, 101, 121-135.
Pugh, N., Ross, S. A., ElSohly, H. N., ElSohly, M. A. & Pasco, D. S. (2001). Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Medica, 67, 737-742.
Qureshi, M. A., Garlich, J. D. & Kidd, M. T. (1996). Dietary Spirulina platensis enhances humoral and cell-mediated immune functions in chickens. Immunopharmacology and Immunotoxicology, 18, 465-476.
Raju, M. V. L. N., Rao, S. V., Radhika, K. & Chawak, M. M. (2005). Dietary supplementation of Spirulina and its effects on broiler chicken exposed to aflatoxicosis. Indian Journal of Poultry Science, 40, 36-40.
SAS Institute, 2001. SAS User’s Guide Statics. SAS Institute Inc., Cary, NC., USA.
Seyidoglu, N., Galip, N., Budak, F. & Uzabaci, E. (2017). The effects of Spirulina platensis (Arthrospira platensis) and Saccharomyces cerevisiae on the distribution and cytokine production of CD4+ and CD8+ T-lymphocytes in rabbits. Austral Journal of Veterinary Sciences, 49, 185-190.
Shanmugapriya, B. & Saravana Babu, S. (2014). Supplementary effect of Spirulina platensis on performance, hematology and carcass yield of broiler chicken. Indian Streams Research Journal, 4, 1-7.
Sharoba, A. M. (2014). Nutritional value of Spirulina and its use in the preparation of some complementary baby food formulas. Journal of Food and Dairy Sciences, 5, 517-538.
Tokuşoglu, Ö. & Üunal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68, 1144-1148.
Tornabene, T. G., Bourne, T. F., Raziuddin, S. & Ben-Amotz, A. (1985). Lipid and lipopolysaccharide constituents of cyanobacterium Spirulina platensis (Cyanophyceae, Nostocales). Marine Ecology Progress Series, 121-125.
Zeweil, H., Abaza, I. M., Zahran, S. M., Ahmed, M. H., AboulEla, H. M. & Saad, A. A. (2016). Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian Journal of Biomedical and Pharmaceutical Sciences, 56, 8-13.