Effects of supplementing close-up diets with rumen undegradable protein on ‎metabolitc status and the incidence of health disorders of Holstein cows during the ‎hot season

Document Type : Research Paper


1 PhD. Candidate, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Professor, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Assistant Professor, Department of Animal Sciences, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran‎

4 Assistant Professor, Department of Animal Sciences, Agriculture and Natural Resources Research Center, Shahrekord, Iran‎


The objective of this study was to evaluate the effect of supplementing close-up diets with rumen undegradable protein on serum metabolites and the incidence of health disorders of Holstein dairy cows, during the hot season. Eighty-eight multiparous Holstein dairy cows were randomly assigned to 1 of 2 treatment groups: low crude protein (14.3% CP; 14CP) and high crude protein (17.1% CP; 17CP) diets. Blood samples were collected weekly from d -30 up to calving and then at 0, 5, 14, and 21 days after calving, for serum metabolites determination.  Cows fed the 17CP diet had higher serum concentrations of albumin, blood urea nitogen, and Mg than 14CP cows during the close-up period. In postpartum, the 17CP cows had higher serum albumin and creatinine and lower free fatty acid, BHB, and glucose concentrations than the 14CP cows. The risk to developing subclinical ketosis (SCK), metritis and endometritis were higher for the 14CP cows than the 17CP cows. Overall, feeding high rumen undegradable protein diet to close-up cows during the hot season increased serum creatinine concentrations and lowered the incidence of SCK and metritis and endometritis postpartum.


  1. Amanlou, H., Farahani, T. A., & Farsuni. N. E. (2017). Effects of rumen undegradable protein supplementation on productive performance and indicators of protein and energy metabolism in Holstein fresh cows. Journal of Dairy Science, 100(5), 3628 3640.
  2. Avendano-Reyes, L., Alvarez-Valenzuela, F. D., Correa-Calderon, A., Saucedo-Quintero, J. S., Robinson, P. H. & Fadel, J. G. (2006). Effect of cooling Holstein cows during the dry period on postpartum performance under heat stress conditions. Livestock Science, 105(1), 198-206.
  3. Baumgard, L. H., Wheelock, J. B., Shwartz, G., O’Brien, M., VanBaale, M. J., Collier, R. J., Rhoads, M. L. & Rhoads, R. P. (2006). Effects of heat stress on nutritional requirements of lactating dairy cattle. In: Proceedings of the 5th Annual Arizona Dairy Production Conference, Arizona University, Tocson, Arizona, 10 Oct., pp. 8-17.
  4. Barash, H., Silanikove, N., Shamay, A. & Ezra, E. (2001). Interrelationships among ambient temperature, day length, and milk yield in dairy cows under a Mediterranean climate. Journal of Dairy Science, 84(10), 2314-2320.
  5. Bell, A. W., Burhans, W. S. & Overton, T. R. (2000). Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows. Proceedings of the Nutrition Society, 59 (1), 119-126.
  6. Bertoni, G., Trevisi, E., Han, X. & Bionaz, M. (2008). Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. Journal of Dairy Science, 91(9), 3300-3310.
  7. Burke, C. R., Meier, S., McDougall, S., Compton, C., Mitchell, M. & Roche, J. R. (2010). Relationships between endometritis and metabolic state during the transition period in pasture grazed dairy cows. Journal of Dairy Science, 93(11), 5363-5373.
  8. Chapinal, N., Carson, M., Duffield, T. F., Capel, M., Godden, S., Overton, M., Santos, J. E. P. & LeBlanc, S. J., 2011. The association of serum metabolites with clinical disease during the transition period. Journal of Dairy Science, 94(10), 4897-4903.
  9. Contreras, G. A. & Sordillo, L. M. (2011). Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comparative Immunology, Microbiology and Infectious Diseases, 34(3), 281-289.
  10. Curtis, C. R., Erb, H. N., Sniffen, C. J., Smith, R. D. & Kronfeld, D. S. (1985). Path analysis of dry period nutrition, postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. Journal of Dairy Science, 68(10), 2347-2360.
  11. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, Imtiwati, J. & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals. A revie, Veterinary World, 9(3), 260-268.
  12. Dikmen, S. & Hansen, P. J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?. Journal of Dairy Science, 92(1), 109-116.
  13. Doepel, L., Lapierre, H. & Kennelly, J. (2002). Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake. Journal of Dairy Science, 85(9), 2315-2334.
  14. Duffield, T. F., Lissemore, K. D., McBride, B.W. & Leslie, K. E. (2009). Impact of hyperketonemia in early lactation dairy cows on health and production. Journal of Dairy Science. 92(2), 571 580.
  15. Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T. & Webster, G. (1989). A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science, 72(1), 68-78.
  16. Farahani, T. A., Amanlou, H. & Kazemi-Bonchenari, M. (2017). Effects of shortening the close-up period length coupled with increased supply of metabolizable protein on performance and metabolic status of multiparous Holstein cows. Journal of Dairy Science, 100(8), 6199-6217.
  17. Farahani, T. A., Amanlou, H., Farsuni, N. E. & Kazemi-Bonchenari, M. (2019). Interactions of protein levels fed to Holstein cows pre-and postpartum on productive and metabolic responses. Journal of Dairy Science, 102(1), 246-259.
  18. Gernand, E., König, S. & Kipp, C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. Journal of Dairy Science, 102(7), 6660-6671.
  19. Grinberg, N., Elazar, S., Rosenshine, I. & Shpigel, N. Y. (2008). Beta-hydroxybutyrate abrogates formation of bovine neutrophil extracellular traps and bactericidal activity against mammary pathogenic Escherichia coli. Infection and Immunity, 76 (6), 2802-2807.
  20. Hammon, D. S., Evjen, I. M., Dhiman, T. R., Goff, J. P. & Walters, J. L. (2006). Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol, 113(1-2), 21-29.
  21. Hartwell, J. R., Cecava M. & Donkin, S. (2000). Impact of dietary rumen undegradable protein and rumen- protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. Journal of Dairy Science, 83 (12), 2907-2917.
  22. Huyler, M. T., Kincaid, R. & Dostal, D. (1999). Metabolic and yield responses of multiparous Holstein cows to prepartum rumen-undegradable protein. Journal of Dairy Science, 82(3), 527-536.
  23. Jamali, H., Barkema, H. W., Jacques, M., Lavallée-Bourget, E. M., Malouin, F., Saini, V., Stryhn, H. & Dufour, S. (2018). Invited review: Incidence, risk factors, and effects of clinical mastitis recurrence indairy cows. Journal of Dairy Science, 101(6), 4729-4746.
  24. Jawor, P. E., Huzzey, J. M., LeBlanc, S. J. & von Keyserlingk, M. A. J. (2012). Associations of subclinical hypocalcemia at calving with milk yield, and feeding, drinking, and standing behaviors around parturition in Holstein cows. Journal of Dairy Science, 95(3), 1240-1248.
  25. Kaufman, J. D., Pohler, K. J., Mulliniks, J. T. & Ríus, A.G, (2018). Lowering rumen degradable and rumen- undegradable protein improved amino acid metabolism and energy utilization in lactating dairy cows exposed to heat stress. Journal of Dairy Science, 101(1), 386-395.
  26. Kelton, D. F., Lissemore, K.D. & Martin, R. E. (1998). Recommendations for recording and calculating the incidence of selected clinical diseases of dairy cattle. Journal of Dairy Science, 81(9), 2502-2509.
  27. Koch, F., Thom, U., Albrecht, E., Weikard, R., Nolte, W., Kuhla, B. & Kuehn, C. (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences, 116(21), 10333-10338.
  28. McArt, J. A. A., Nydam, D. V. & Overton, M. W. (2015). Hyperketonemia in early lactation dairy cattle: A deterministic estimate of component and total cost per case. Journal of Dairy Science, 98(3), 2043-2054.22
  29. McCabe, C. J. & Boerman, J. P. (2020). Invited Review: Quantifying protein mobilization in dairy cows during the transition period. Applied Animal Science, 36(3), 389-396.
  30. Megahed, A. A., Hiew, M. W. H., Ragland, D. & Constable, P. D. (2019). Changes in skeletal muscle thickness and echogenicity and plasma creatinine concentration as indicators of protein and intramuscular fat mobilization in periparturient dairy cows. Journal of Dairy Science, 102(6), 5550-5565.
  31. Moorby, J. M., Dewhurst, R. J., Evans, R. T. & Fishurt, W. J. (2002). Effects of level of concentrate feeding during the second gestation of Holstein-Friesian dairy cows. 2. Nitrogen balance and plasma metabolites. Journal of Dairy Science, 85(1), 178-189.
  32. (2001). Nutrient Requirements of Dairy Cattle (7th rev. ed), Natl. Acad. Press, Washington, DC.
  33. Oetzel, G. R. & Eastridge, M. (2013). Minimizing hypocalcemia during early lactation. In: Procedings of 22nd Tri-State Dairy Nutrition Conference, April 23–24, Michigan State University, Ann Arbor, PP. 23-32.
  34. Park, A. F., Shirley, J., Titgemeyer, E., Meyer, M., VanBaale, M. & VandeHaar, M. (2002). Effect of protein level in prepartum diets on metabolism and performance of dairy cows. Journal of Dairy Science, 85(7), 1815-1828.
  35. Sheldon, I. M., Lewis, G. S., LeBlanc, S. & Gilbert, R. O. (2006). Defining postpartum uterine disease in cattle. Theriogenology, 65(8), 1516-1530.
  36. St-Pierre, N. R., Cobanov, B. & Schnitkey, G. (2003). Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86(1), E52-E77.
  37. Suthar, V. S., Canelas-Raposo, J., Deniz, A. & Heuwieser, W. (2013). Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. Journal of Dairy Science, 96 (5), 2925-2938.
  38. Tao, S. & Dahl, G., 2013. Heat stress effects during late gestation on dry cows and their calves. Invited review. Journal of Dairy Science, 96(7), 4079-4093.
  39. Urdaz, J. H., Overton, M. W., Moore, D. A. & Santos, J. E. P. (2006). Effects of adding shade and fans to a feedbunk sprinkler system for preparturient cows on health and performance. Journal of Dairy Science, 89(6), 2000-2006.
  40. Van der Drift, S. G. A., Houweling, M., Schonewille, J. T., Tielens, A. G. M. & Jorritsma, R. (2012). Protein and fat mobilization and associations with serum β-hydroxybutyrate concentrations in dairy cows. Journal of Dairy Science, 95(9), 4911-4920.
  41. Van Saun, R. J. & Sniffen, C. J. (1995). Effects of undegradable protein fed prepartum on lactation, reproduction, and health in dairy cattle. II. Postpartum diets and performance. Journal of Dairy Science, 78(Suppl. 1), 265.
  42. Van Soest, P. J., Robertson, J. & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597.
  43. West, J. W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131 2144.
  44. Zimbelman, R. B., Rhoads, R. P., Rhoads, M. L., Duff, G. C., Baumgard, L. H. & Collier, R. J. (2009). A re- evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In: Proceedings of the Southwest Nutrition Conference, 9-11 Mar., pp. 158-169.