Effects of CLA supplementation in diets with different levels of forage NDF on ‎performance, serum metabolites and liver functionality in Holstein fresh cows ‎

Document Type : Research Paper

Authors

1 Professor, Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

2 Assistant Professor, Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran‎

3 Assistant Professor, Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and Natural‏ ‏Resources Research and ‎Education Center, AREEO, Shahrekord, Iran

Abstract

The aim of this study was to evaluate the effects of CLA supplementation in diets with different levels of forage NDF on performance, serum metabolites and liver functionality in Holstein fresh cows. Forty Cows were blocked based on their body condition score at calving and 305-d mature-equivalent milk yield, and randomly allocated to 1 of 4 experimental diets from calving to 21 days in milk (DIM). Treatments were used in a 2×2 factorial arrangement with 2 levels of fNDF and 2 doses of CLA supplement; Treatments were formulated to contain 18.0 or 23.0% fNDF without or with CLA supplement for diets 18fNDF-CLA, 18fNDF+CLA, 23fNDF-CLA and 23fNDF+ CLA. There was no effect of fNDF by CLA interaction on investigated items. Dry matter intake increased up to 1.5 kg with 18fNDF diet compared to 23FNDF (P<0.01), while the addition of CLA reduced the dry matter intake to 1.15 kg/d compared to diets without CLA supplementation (P<0.01). Cows fed 23fNDF diet lost more body weight than those fed 18fNDF. Milk yield was higher for cows fed 18fNDF than 23fNDF (P<0.01). Cows fed diets containing CLA produced more milk, lower milk fat percentage, and higher lactose content. (P<0.05). Serum glucose was higher in cows fed CLA-containing diets (P<0.01). Cows fed 18fNDF had lower serum concentrations of NEFA and BHBA compared to those fed 23fNDF (P<0.05), but CLA supplementation did not affect serum NEFA and BHBA (P>0.05). (P<0.05). In general, the reduction of forage NDF in the diet of fresh cows led to improved feed intake and production performance. Addition of CLA to the diet of fresh cows led to glucose savings by reducing fat synthesis, increasing lactose content and milk production.

Keywords


  1. Allen, M. S., Bradford, B. J., & Oba, M. (2009). Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, 87 (10), 3317-3334.
  2. (1990). Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Arlington, VA.
  3. Bauman, D. E., Perfield, J. W., Harvatine, K. J., & Baumgard, L. H. (2008). Regulation of fat synthesis by conjugated linoleic acid: lactation and the ruminant model. The Journal of Nutrition, 138 (2), 403-409.
  4. Bauman, D. E., & Griinari, J. M. (2003). Nutritional regulation of milk fat synthesis. Annual Review of Nutrition, 23 (1), 203-227.
  5. Bauman, D. E., Harvatine, K. J., & Lock, A. L. (2011). Nutrigenomics, rumen-derived bioactive fatty acids, and the regulation of milk fat synthesis. Annual Review of Nutrition, 31, 299-319..
  6. Bradford, B. J., & Mullins, C. R. (2012). Invited review: Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. Journal of Dairy Science, 95 (9), 4735-4746.
  7. Castaneda-Gutierrez, E., Overton, T. R., Butler, W. R., & Bauman, D. E. (2005). Dietary supplements of two doses of calcium salts of conjugated linoleic acid during the transition period and early lactation. Journal of Dairy Science, 88 (3), 1078-1089.
  8. Chandler, T. L., Fugate, R. T., Jendza, J. A., Troescher, A., & White, H. M. (2017). Conjugated linoleic acid supplementation during the transition period increased milk production in primiparous and multiparous dairy cows. Animal Feed Science and Technology, 224, 90-103.
  9. Gaines, W.L., and Overman, O. R. (1938). Interrelation of milk fat, milk protein and milk energy yield. Journal of Dairy. 21:261–271.
  10. Garverick, H. A., Harris, M. N., Vogel-Bluel, R., Sampson, J. D., Bader, J., Lamberson, W. R., ... & Youngquist, R. S. (2013). Concentrations of nonesterified fatty acids and glucose in blood of periparturient dairy cows are indicative of pregnancy success at first insemination. Journal of Dairy Science,96 (1), 181-188.
  11. Hernandez-Urdaneta, A., Coppock, C. E., McDowell, R. E., Gianola, D., & Smith, N. E. (1976). Changes in forage-concentrate ratio of complete feeds for dairy cows. Journal of Dairy Science,59 (4), 695-707.
  12. Holt, M. S., Williams, C. M., Dschaak, C. M., Eun, J. S., & Young, A. J. (2010). Effects of corn silage hybrids and dietary nonforage fiber sources on feed intake, digestibility, ruminal fermentation, and productive performance of lactating Holstein dairy cows. Journal of Dairy Science,93 (11), 5397-5407.
  13. Hötger, K., Hammon, H. M., Weber, C., Görs, S., Tröscher, A., Bruckmaier, R. M., & Metges, C. C. (2013). Supplementation of conjugated linoleic acid in dairy cows reduces endogenous glucose production during early lactation. Journal of Dairy Science,96 (4), 2258-2270.
  14. Hutchinson, I. A., Hennessy, A. A., Dewhurst, R. J., Evans, A. C. O., Lonergan, P., & Butler, S. T. (2012). The effect of strategic supplementation with trans-10, cis-12 conjugated linoleic acid on the milk production, estrous cycle characteristics, and reproductive performance of lactating dairy cattle. Journal of Dairy Science,95 (5), 2442-2451.
  15. Kay, J. K., Roche, J. R., Moore, C. E., & Baumgard, L. H. (2006). Effects of dietary conjugated linoleic acid on production and metabolic parameters in transition dairy cows grazing fresh pasture. Journal of Dairy Research, 73 (3), 367-377.
  16. Kokkonen, T., Taponen, J., Anttila, T., Syrjälä-Qvist, L., Delavaud, C., Chilliard, Y., ... & Tesfa, A. T. (2005). Effect of body fatness and glucogenic supplement on lipid and protein mobilization and plasma leptin in dairy cows. Journal of Dairy Science, 88 (3), 1127-1141.
  17. Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for Mixed Models. 2nd. Cary, NC: SAS Institute Inc..
  18. Miron, J., Adin, G., Solomon, R., Nikbachat, M., Zenou, A., Yosef, E., ... & Mabjeesh, S. J. (2010). Effects of feeding cows in early lactation with soy hulls as partial forage replacement on heat production, retained energy and performance. Animal Feed Science and Technology, 155 (1), 9-17.
  19. Naderi, N., Ghorbani, G. R., Sadeghi-Sefidmazgi, A., Nasrollahi, S. M., & Beauchemin, K. A. (2016). Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production. Journal of Dairy Science, 99 (11), 8847-8857.
  20. National Research Council (2001). Nutrient Requirements of Dairy Cattle, 7th ed., Washington, DC: National Academy Press.
  21. Odens, L. J., Burgos, R., Innocenti, M., VanBaale, M. J., & Baumgard, L. H. (2007). Effects of varying doses of supplemental conjugated linoleic acid on production and energetic variables during the transition period. Journal of Dairy Science, 90 (1), 293-305.
  22. Pappritz, J., Meyer, U., Kramer, R., Weber, E. M., Jahreis, G., Rehage, J., Flachowsky G., & Dänicke, S. (2011). Effects of long-term supplementation of dairy cow diets with rumen-protected conjugated linoleic acids (CLA) on performance, metabolic parameters and fatty acid profile in milk fat. Archives of Animal Nutrition,65 (2), 89-107.
  23. Piantoni, P., Lock, A. L., & Allen, M. S. (2014). Saturated fat supplementation interacts with dietary forage NDF content during the immediate postpartum in Holstein cows: Energy balance and metabolism. Journal of Dairy Science, 98, 3323-3334.
  24. Piantoni, P., Lock, A. L., & Allen, M. S. (2015). Saturated fat supplementation interacts with dietary forage neutral detergent fiber content during the immediate postpartum and carryover periods in Holstein cows: Production responses and digestibility of nutrients. Journal of Dairy Science, 98 (5), 3309-3322.
  25. Rabelo, E., Rezende, R. L., Bertics, S. J., & Grummer, R. R. (2003). Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows. Journal of Dairy Science,86 (3), 916-925.
  26. Schäfers, S., Von Soosten, D., Meyer, U., Drong, C., Frahm, J., Kluess, J., Raschka C., Rehage J., Tröscher A., Pelletier W., & Dänicke, S. (2017). Influence of conjugated linoleic acid and vitamin E on performance, energy metabolism, and change of fat depot mass in transitional dairy cows. Journal of Dairy Science, 100 (4), 3193-3208.
  27. Schlegel, G., Ringseis, R., Windisch, W., Schwarz, F. J., & Eder, K. (2012). Effects of a rumen-protected mixture of conjugated linoleic acids on hepatic expression of genes involved in lipid metabolism in dairy cows. Journal of Dairy Science,95 (7), 3905-3918.
  28. Undersander, D., Mertens, D. R., & Thiex, N. (1993). Forage analyses. Information Systems Division, National Agricultural Library (United States of America) NAL/USDA, 10301.
  29. Van Soest, P. V., Robertson, J. B., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74 (10), 3583-3597.
  30. Voigt, J., Gaafar, K., Kanitz, W., Precht, D., Becker, F., Schneider, Spitschak, M., Schönhusen, U., Junghans, P., Aschenbach, J.R, & Gäbel, G. (2005). Utilization of glucose and long-chain fatty acids in lactating dairy cows fed a fat-enriched diet.  Deutsche Tierarztliche Wochenschrift, 112 (11), 423-425. (In German).
  31. Von Soosten, D., Meyer, U., Weber, E. M., Rehage, J., Flachowsky, G., & Dänicke, S. (2011). Effect of trans-10, cis-12 conjugated linoleic acid on performance, adipose depot weights, and liver weight in early-lactation dairy cows. Journal of Dairy Science, 94 (6), 2859-2870.
  32. Von Soosten, D., Meyer, U., Piechotta, M., Flachowsky, G., & Dänicke, S. (2012). Effect of conjugated linoleic acid supplementation on body composition, body fat mobilization, protein accretion, and energy utilization in early lactation dairy cows. Journal of Dairy Science, 95 (3), 1222-1239.
  33. Wildman, E. E., Jones, G. M., Wagner, P. E., Boman, R. L., Troutt Jr, H. F., & Lesch, T. N. (1982). A dairy cow body condition scoring system and its relationship to selected production characteristics. Journal of Dairy Science, 65 (3), 495-501.