Effects of activated zinc oxide on serum changes of interleukin 6, ‎tumor necrosis factor alpha and occludance 1 in broiler breeder hens

Document Type : Research Paper

Authors

1 Postdoctoral Researcher, Department of Animal Science, University of Tehran, College of ‎Agriculture and Natural Resources, Karaj, Iran

2 Professor, Department of Animal Science, University of Tehran, College of Agriculture and Natural ‎Resources, Karaj, Iran

3 Ph. D. Canddiate, Department of Animal Science, University of Tehran, College of Agriculture and Natural Resources, Karaj, Iran

Abstract

The aim of this study was to investigate the effect of physical properties of zinc oxide on serum changes of interleukin 6 (IL-6), tumor necrosis factor alpha (TNFα) and occludance 1 (ZO-1) in broiler breeders. A total of 200 hens (Ross 308), at the age of 54 weeks, was used in a completely randomized design with 4 treatments, 5 replications, and 10 birds per replication. In this study, two levels of zinc (70 and 100 mg/kg diet), and two ZnO sources (regular zinc oxide and activated zinc oxide) were used. The production performance of the birds and the concentration of interleukin 6, tumor necrosis factor and occludin in serum were measured at the end of the experiment. The supply of 70 mg/kg diet in both its regular and activated ZnO forms increased blood concentration of TNFα and ZO-1 (P<0.01). In contrast, addition of 100 mg of ZnO from both sources reduced pro-inflammatory factors and concentration of ZO-1 in the blood (P<0.01). Results of present study showed that the concentration of blood inflammatory factors and tight junction proteins in hens that are prone to intestinal inflammation which probably occur due to a meal in a day decreases with the consumption of higher levels of zinc. Changes in inflammatory factors and the concentration of tight junction proteins were in the same direction. Consumption of 100 mg of activated ZnO decreased IL-6 compared to 70 mg (P<0.01). Therefore, it is concluded that the change in physical properties, has improved the functionality of ZnO.

Keywords


  1. Abu-Dieyeh, Z. H. M. (2006). Effect of chronic heat stress and long-term feed restriction on broiler performance. International Journal of Poultry Science, 5(2), 185-190.
  2. Al-Batshan, H. A., Scheideler, S. E., Black, B. L., Garlich, J. D. & Anderson, K. E. (1994). Duodenal calcium-uptake, femur ash, and eggshell quality decline with age and inrease following molt. Poultry Science, 73(10), 1590-1596.
  3. Alves, T. E. P., Kolodziej, C., Burda, C. & Franco, A. (2018). Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method. Materials & Design, 146(15), 125-133.
  4. Ao, T. & Pierce, J. (2013). The replacement of inorganic mineral salts with mineral proteinates in poultry diets. World’s Poultry Science Journal, 69(1), 5-16.
  5. Aviagen Group Ltd. 2016. Ross 308. Parent stock nutrition spesification. Aviagen, newbridge, Midlothian EH28 8SZ, Scotland, UK.
  6. Bao, S. & Knoell, D. L. (2006). Zinc modulates cytokine-induced lung epithelial cell barrier permeability. American Journal of Physiology-Lung Cellular and Molecular Physiology, 291(6), L1132-L1141.
  7. Bilski, J., Mazur-Bialy, A., Wojcik, D., Zahradnik-Bilska, J., Brzozowski, B., Magierowski, M., Mach, T.,  Magierowska, K. & Brzozowski, T. (2017). The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators of Inflammation, 2017( 9074601):9p.
  8. Bortoluzzi, C., Lumpkins, B., Mathis, G. F., Fran, M., King, W. D., Graugnard, D. E., Dawson, K. A. & Applegate, T. J. (2019). Zinc source modulates intestinal inflammation and intestinal integrity of broiler chickens challenged with coccidia and Clostridium perfringens. Poultry Science, 98(5), 2211-2219.
  9. Cheng, J., Kornegay, E. T. & Schell, T. (1998). Influence of dietary lysine on the utilization of zinc from ZnSO4 and a zinc-lysine complex by young pigs. Journal of Animal Science, 76(4), 1064-1074.
  10. Dardenne, M. (2002). Zinc and immune function. European Journal of Clinical Nutrition, 56, 20–23.
  11. Eckersall, P. D. (2000). Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Revue de medecine veterinaire, 151(7), 577-584..
  12. Fawley, J. & Gourlay, D. M. (2016). Intestinal alkaline phosphatase: a summary of its role in clinical disease. Journal of Surgical Research, 202(1), 225-234.
  13. Finamore, A., Massimi, M., Conti Devirgiliis, L. & Mengheri, E. (2008). Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. The Journal of Nutrition-Nutrition and Disease, 138(9), 1664-1670.
  14. Gruys, E., Obwolo, M.J., Toussaint, & M.J.M. (1994). Diagnostic significance of the major acute phase proteins in veterinary clinical chemistry: a review. Vet. Bull. 64, 1009 – 1018.
  15. Huang, L., Li, X., Wang, W., Yang, L. & Zhu, Y. (2019).  The role of zinc in poultry breeder and hen nutrition: an Update. Biological Trace Element Research, 192(2), 308-318.
  16. Kuttappan, V. A., Berghman, L. R., Vicuña, E. A., Latorre, J. D., Menconi, A., Wolchok, J. D., ... & Bielke, L. R. (2015). Poultry enteric inflammation model with dextran sodium sulfate mediated chemical induction and feed restriction in broilers. Poultry Science, 94(6), 1220-1226.
  17. Lambert, J.C., Zhou, Z., Wang, L., Song, Z., McClain, C. J. & Kang, Y. J. (2004). Preservation of intestinal structural integrity by zinc is independent of metallothionein in alcohol-intoxicated mice. American Journal of Pathology, 164(6), 1959-1966.
  18. Lambert, J. C., Zhou, Z., Wang, L., Song, Z., Mcclain, C. J., & Kang, Y. J. (2003). Prevention of alterations in intestinal permeability is involved in zinc inhibition of acute ethanol-induced liver damage in mice. Journal of Pharmacology and Experimental Therapeutics, 305(3), 880-886.
  19. Li, C., Guo, S., Gao, J., Guo, Y., Du, E., Lv, Z. & Zhang, B. (2015). Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. Journal of Nutritional Biochemistry, 26(2), 173-183.
  20. Liu, P., Pieper, R., Rieger, J., Vahjen, W., Davin, R., Plendl, J., Meyer, W. & Zentek, J. (2014). Effect of dietary zinc oxide on morphological characteristics, mucin composition and gene expression in the colon of weaned piglets. Plos One, 9(3), e91091.
  21. MacDonald, R. S. (2000). The role of zinc in growth and cell proliferation. Journal of Nutrition, 130, 1500S-1508S.
  22. Mayer, A. N., Vieira, S. L., Berwanger, E., Angel, C. R., Kindlein, L., Franca¸ I. & Noetzold, T. L. (2018). Zinc requirements of broiler breeder hens. Poultry Science, 0, 1-14.
  23. Millan, J. L. (2006).  Mammalian Alkaline Phosphatases: From Biology to Applications in Medicine and Biotechnology. Wiley-Blackwell.
  24. Miyoshi, Y., Tanabe, S. & Suzuki, X. T. (2016). Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311(1), 105-116.
  25. Mutus, R., Kocabagli, N., Alp, M., Acar, N., Eren, M. & Gezen, S. (2006). The effect of dietary probiotic supplementation on tibial bone characteristics and strength in broilers. Poultry Science, 85(9), 1621-1625.
  26. Nouri, O., Zaghari, M. & Mehrvarz, H. (2019). Scrutinizing mixer efficiency and poultry feedhomogeneity. In: XVIII European Symposium on the Quality of Eggs and Egg Products and XXIV European Symposium on the Quality of Poultry Meat: 191 (Abstract). Izmir, Turkey.
  27. O’Dell, B. L. (1983). Bioavailability of essential and toxic trace elements. Federation proceedings, 42(6), 1714-1715.
  28. Olgun, O. & Yildiz, A.O. (2017). Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens. Annals of Animal Science, 17(2), 463-476.
  29. Panda, A.K., Rama Rao, S.S., Raju, M.V. & Sharna, S.S. (2008). Effect of probiotic (Lactobacillus Sporogenes) feeding on egg production and quality, yolk cholesterol and humoral immune response of White Leghorn layer breeders. Journal of the Science of Food and Agriculture, 88(1), 43-47.
  30. Riggle, K. M., Rentea, R. M., Welak, S. R., Pritchard, K. A., Jr, K., Oldham, T. & Gourlay, D. M. (2013). Intestinal alkaline phosphatase prevents the systemic inflammatory response associated with necrotizing enterocolitis. Journal of Surgical Research, 180(1), 21-26.
  31. Roy, S.K., Behrens, R.H., Haider, R., Akramuzzaman, S.M., Mahalanabis, D., Wahed, M.A. & Tomkins, A.M. (1992). Impact of zinc supplementation on intestinal permeability in Bangladeshi children with acute diarrhoea and persistent diarrhoea syndrome. J Pediatr Gastroenterol Nutr. 15, 289-296.
  32. Salim, H.M., Jo, C. & Lee, B.D. (2008). Zinc in broiler feeding and nutrition. Avian Biology Research, 1(1), 5-18.
  33. Sargeant, H. R., Miller, H. M. & Shaw, M. A., (2011). Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. Coli infection is modulated by zinc supplementation. Molecular Immunology, 48(15-16), 2113-2121.
  34. SAS Institute. (2011). SAS/STAT User’s Guide: Statistics. Release 9.3 ed. SAS Institute Inc., Cary, NC.
  35. Shankar, A. H. & Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. The American journal of clinical nutrition, 68(2), 447S-463S.
  36. Sturniolo, G.C., Di Leo, V., Ferronato, A., D’Odorico, A. & D’Inca, R. (2001). Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflammatory Bowel Disease, 7(2), 94-98.
  37. Sturniolo, G. C., Fries, W., Mazzon, E., Di Leo, V., Barollo, M. & D'inca, R. (2002). Effect of zinc supplementation on intestinal permeability in experimental colitis. Journal of Laboratory and Clinical Medicine, 139(5), 311-315.
  38. Tabatabaie, M. M., Aliarabi, H., Saki, A. A., Ahmadi, A. & Siyar, S. A. (2007). Effect of different sources and levels of zinc on egg quality and laying hen performance. Pakistan Journal of Biological Sciences, 10(19), 3476-3478.
  39. Walter, J. K., Rueckert, C., Voss, M., Mueller, S. L., Piontek, J., Gast, K. & Blasig, I. E. (2009). The Oligomerization of the Coiled Coil‐domain of Occluddin Is Redox Sensitive. Annals of the New York Academy of Sciences, 1165(1), 19.
  40. Wang, X., Valenzano, M. C., Mercado, J. M., Zurbach, E. P. & Mullin, J. M. (2013). Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Digestive Diseases and Sciences, 58(1), 77-87.
  41. Wang, W., Chen, S. W. & Zhu, J. (2015). Intestinal alkaline phosphatase inhibits the translocation of bacteria of gut-origin in mice with peritonitis: mechanism of action. Plos One, 10(5), e0124835.
  42. Wapnir, R. A. (2000). Zinc deficiency, malnutrition and the gastrointestinal tract. The Journal of nutrition, 130(5), 1388S-1392S.
  43. Warner, N. & Nunez, G. (2013). MyD88: a critical adaptor protein in innate immunity signal transduction. The Journal of Immunology, 190(1), 3-4.
  44. Jiao, X., He, P., Li, Y., Fan, Z., Si, M., Xie, Q., ... & Huang, D. (2015). The role of circulating tight junction proteins in evaluating blood brain barrier disruption following intracranial hemorrhage. Disease markers, 2015.
  45. Zaghari, M. & Honarbaksh, SH. (2020). Supplement and Therapeutic premixes Manufacturing for Poultry (A Comprehensive Guide). A book. MinaToyoor Publishing. (1th ed.). Pages 200,122, 298 & 332. (In Farsi)
  46. Zhang, B. & Guo, Y. (2009). Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. British Journal of Nutrition, 102(5), 687-93.
  47. Zhang, Y. N., Wang, J., Zhang, H. J., Wu, S. G. & GH, Qi. (2017). Effect of dietary supplementation of organic or inorganic manganese on eggshell quality, ultrastructure, and components in laying hens. Poultry Science, 96(7), 2184-2193.
  48. Zhu, C., Lv, H., Chen, Z., Wang, L., Wu, X., Chen, Z., Zhang, W., Liang, R. & Jiang, Z. (2017). Dietary zinc oxide modulates antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Biological trace element research. Biological Trace Element Research, 75(2), 331-338.