Effect of high dietary zinc, copper and manganese concentration and source on ‎plasma progesterone and reproductive performance in repeat breeder cows

Document Type : Research Paper

Authors

1 Ph.D. Candidate, Faculty of Agriculture, University of Zanjan, Zanjan, ‎Iran

2 Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

3 Associate Professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran

4 DVM, PhD in FKA Animal Husbandry and Agriculture Co., Irsfahan, Iran‎

Abstract

We used 263 Holstein repeat breeder dairy cows (193±58 DIM) based on randomized complete design. Animals in control group (no supplementation), groups 2 and 3 supplemented with 2,244 mg of zinc, 295.5 mg copper and 480 mg manganese either inorganic trace minerals (ITM) and chelated (glycinates) trace minerals (CTM) sources, respectively. Supplemental minerals were fed daily as a top dress. All cows were inseminated according to Double-Ovsynch protocol. Super oxide dismutase concentration tended to have higher in CTM and ITM treatments than in control group (P=0.09). Progesterone concentration at day 11 after artificial insemination was higher in CTM and ITM treatments than in control group (P<0.05). Cows in CTM and ITM treatments tended to have greater odds of becoming pregnant at first and cumulative (first and second service) than cows in control group (P=0.1 and P=0.13 respectively). According to the results of this study, diets supplemented above National Research Council (NRC, 2001) requirments for zinc, copper and manganese in repeat breeding cows, improved fertility.

Keywords


  1. Ayres, H., Ferreira, R.M., Cunha A.P., Araújo, R.R. & Wiltbank, M.C. (2013). Double-Ovsynch in high-producing dairy cows: Effects on progesterone concentrations and ovulation to GnRH treatments. Theriogenology, 79, 159-164.
  2. Bach, A., Pinto, A.B. & Blanch, M. (2015). Association between chelated trace mineral supplementation and milk yield, reproductive performance, and lameness in dairy cattle. Livestock Science, 182, 69-75.
  3. Ballantine, H. T., Socha, M. T., Tomlinson, D. J., Johnson, A. B., Fielding, A. S., Shearer, J. K. & van Amstel, S. R. (2002). Effects of feeding complexed zinc, manganese, copper and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction and lactation performance. The Professional Animal Scientist, 18, 211-218.
  4. Bartlett, P.C., Kirk, J.H. & Mather, E.C. (1986). Repeated insemination in Michigan Holstein Friesian cattle: incidence, descriptive epidemiology and estimated economic impact. Theriogenology, 26, 309-322.
  5. Barui, A., Batabyal, S., Ghosh, S., Saha, D. & Chattopadhyay, S. (2015). Plasma mineral profiles and hormonal activities of normal cycling and repeat breeding crossbred cows: a comparative study. Veterinary World, 8, 42-45.
  6. Bicalho, M. L., Lima, F. S., Ganda, E. K., Foditsch, C., Meira, E. B., Machado, V. S., Teixeira, A. G., Oikonomou, G., Gilbert, R.O. & Bicalho, R. C. (2014). Effect of trace mineral supplementation on selected minerals, energy metabolites, oxidative stress, and immune parameters and its association with uterine diseases in dairy cattle. Journal of Dairy Science, 97, 4281-4295.
  7. Carvalho, P. D., Guenther, J. N., Fuenzalida, M.J., M. C., Amundson., Wiltbank. M. C. & Fricke, P. M. (2014). Presynchronization using a modified Ovsynch protocol or a single GnRH injection 7 d before an Ovsynch-56 protocol for submission of lactating dairy cows for first timed artificial insemination. Journal of Dairy Science, 97, 1-11.
  8. Cope, C.M., Mackenzie, A.M., Wilde, D. & Sinclair, L.A. (2009). Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92, 2128-2135.
  9. Daniel, J. B., Kvidera, S. K. & Martín-Tereso, J. (2020). Total-tract digestibility and milk productivity of dairy cows as affected by trace mineral sources. Journal of Dairy Science, 103, 2020-18754.
  10. Diskin, M.G. & Morris, D.G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reproduction in Domestic Animals, 43, 260-267.
  11. Dobson, H., Tebble, J.E., Smith, R.F. & Ward, W.R. (2001). Is stress really that important? Theriogenology, 55, 65-73.
  12. Faulkner, M. J., St-Pierre, N. R & Weiss, W. P. (2017a). Effect of source of trace minerals in either forage- or by-product-based diets fed to dairy cows: 2. Apparent absorption and retention of minerals. Journal of Dairy Science, 100, 5368-5377.  
  13. Faulkner, M. J., Wenner, B. A., Solden L. M. & Weiss, W. P. (2017b). Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. Journal of Dairy Science, 100, 1037-1044.
  14. Goff, J.P. (2014). Calcium and magnesium disorders. Veterinary Clinics of North America: Food Animal Practice, 30, 359-381.
  15. Hackbart, K. S., Ferreira, R. M., Dietsche, A. A., Socha, M. T., Shaver, R. D., Wiltbank, M. C. & Fricke, P. M. (2010). Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. Journal of Animal Science, 88, 3856-3870.
  16. Huszenicza, G. F., Janosi, S. & Peters A. R. (2005). Effects of clinical mastitis on ovarian function in postpartum dairy cows. Reproduction in Domestic Animals, 40, 199-204.
  17. Spears, J. W. & Weiss, W. P.  (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows, Veterinary Journal, 176, 70-76.
  18. Kendall, N. R., Marsters, P., Guo, L., Scaramuzzi, R. J. & Campbell, B. K. (2006). Effect of copper and thiomolybdates on bovine theca cell differentiation in vitro. Journal Endocrinology, 189, 455-463.
  19. Kinal, S., Korniewiez, A., Jamroz, D., Zieminski, R. & Slupezynska, M. (2005). Dietary effects of zinc, copper and manganese chelates and sulphates on dairy cows. Journal of Food, Agriculture and Environment, 3, 168-172.
  20. Law, R.A., Young, F., Patterson, D., Kilpatrick, D., Wylie, A. & Mayne, C. (2009). Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. Journal of Dairy Science, 92, 1001-1012.
  21. Miller, W. J., Amos, H. E., Gentry, R. P., Blackmon, D. M., Durrance, R. M., Crowe, C.T., Fielding, A. S. & Neathery, M. W. (1989). Long-term feeding of high zinc sulfate diets to lactating and gestating dairy cows. Journal of Dairy Science, 72(6), 1499-508.
  22. Moore, D. A., Overton, M. W., Chebel, R. C., Truscott, M. L. & BonDurant, H. (2005). Evaluation of factors that affect embryonic loss in dairy cattle. Journal of The American Veterinary Medical Association, 226, 1112-1118.
  23. Nemec, L. M., Richards, J. D., Atwell, C. A., Diaz, D. E., Zanton, G. I. & Gressley, T. F. (2012). Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxyanalogue chelates. Journal of Dairy Science, 95, 4568-4577.
  24. Nix, J. (2002). Trace minerals important for goat reproduction. Sweetlix Livestock Supplement System.www.sweetlix.com/media.
  25. Nocek, J. E., Socha, M. T. & Tomlinson, D. J. (2006). The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science, 89, 2679-2693.
  26. Noda, Y., Ota, K., Shirasawa, T., Takahiko. & Shimizu, T. (2012). Copper/Zinc Superoxide Dismutase Insufficiency Impairs Progesterone Secretion and Fertility in Female Mice. Biology of Reproduction, 86(16), 1-8.
  27. NRC. (2001). Nutrient requirements of dairy cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC.
  28. Okado-Matsumoto, A. & Fridovich, I. (2001). Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. Journal of Biological Chemistry, 276, 38388-38393.
  29. Overton, T. R. & Yasui, T. (2014). Practical applications of trace minerals for dairy cattle. Journal of Animal Science, 92, 416-426.
  30. Pursley, J. R. & Martins, J. P. (2012). Impact of circulating concentrations of progesterone and antral age of the ovulatory follicle on fertility of high-producing lactating dairy cows. Reproduction, Fertility and Development, 24, 267-71.
  31. Rabiee, A. R., Lean, I. J., Stevenson, M. A. & Socha, M. T. (2010). Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. Journal of Dairy Science, 93, 4239-4251.
  32. Rizzo, A., Minoia, G., Trisolini, C., Manca, R. & Sciorsci, R. L. (2007). Concentrations of free radicals and beta-endorphins in repeat breeder cows. Animal Reproduction Science, 100, 257-263.
  33. Sales, J.N., Pereira, S., Bicalho, R.V.V. & Baruselli, P.S. (2011). Effect of injectable copper, selenium, zinc and manganese on the pregnancy rate of crossbred heifers (Bos indicus × Bos taurus) synchronized for timed embryo transfer. Livestock Science, 142, 59-62.
  34. Sangsritavong, S., Combs, D.K., Sartori, R., Armentano, L. & Wiltbank, M.C. (2002). High feed intake increases liver blood flow and metabolism of progesterone and 17 β-estradiol in dairy cows. Journal of Dairy Science, 85, 2831-2842.
  35. Scaletti, R. W., Trammell, D. S., Smith, B. A. & Harmon, R. J. (2003). Role of dietary copper in enhancing resistance to Escherichia coli mastitis. Journal of Dairy Science, 86, 1240-1249.
  36. Sharma, N.C., Luktuke, S.N. & Gupta, S.K. (1983). Incidence of repeat breeding in crossbred cows. Indian Journal of Animal Reproduction, 3, 110-112.
  37. Spain, J. 1993. Tissue integrity: a key defense against mastitis infection: the role of zinc proteinates and a theory for mode of action. In: Lyons, T.P. (Ed.), Biotechnology in the Feed Industry. In: Proceedings of the 9th Annual Symposium. Alltech Technical Publication, Nicholasville, KY, USA, pp. 53-58.
  38. Spears, J. W. & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. Veterinary Journal, 176, 70-76.
  39. Starbuck, G. R., Darwash, A. O., Mann, G. E. & Lamming, G. E. (2001). The detection and treatment of post insemination progesterone inefficiency in dairy cows. Pages 447-450 in Fertility in the High- Producing Dairy Cow. M. G. Diskin, ed. Occasional Publications No. 26, Br. Soc. Anim. Sci., Edinburgh, UK.
  40. Suttle, N. (2010). Mineral nutrition of livestock. (4th Ed.). Midlothian Eh 26.
  41. Wathes, D. C., Taylor, V. J., Cheng, Z. & Mann, G. E. (2003). Follicle growth, corpus luteum function and their effects on embryo development in postpartum dairy cows. Reproduction (Cambridge, England) Supplement, 61, 219-237.
  42. Weiss, W. P. & Socha, M. T. (2005). Dietary Manganese for Dry and Lactating Holstein Cows. Journal of Dairy Science, 88, 2517-2523.
  43. Weiss, W. P. (2005). Antioxidants nutrients, cow health and milk quality. Pages 11-18 in Dairy Cattle Nutrition Workshop, Department of Dairy and Animal Sciences, Penn State, Happy Valley, PA.
  44. Weiss, W. P. (2017). Recommendations for Trace Minerals for Dairy Cows. In: Procceeding of 29th Annual Florida Ruminant Nutrition Symposium, 5-7 Feb., Florida University, pp. 89-101.
  45. Weiss, W.P. & Spears, J.W. (2006). Vitamin and trace mineral effects on immune function of ruminants. In: Sejrsen, K., Hvelplund, T., Nielsen, M.O. (Eds.), Ruminant Physiology. Wageningen Academic Publishers, Utrecht, The Netherlands. pp. 473-496.
  46. Yasui, T., Ehrhardt, R. M., Bowman, G. R., M., Vazquez-Anon, J. D., Richards, C. A., Atwell, Wineman, T. D. & Overton, T. R. (2009). Effects of trace mineral amount and source on aspects of oxidative status and immune function in dairy cows. Journal of Dairy Science, 92 (E. Suppl. 1), 725. (Abstr).