The effect of curcumin on frozen-thawed sperm quality and fertility of broiler ‎breeder roosters

Document Type : Research Paper

Authors

1 M.Sc. Student, Department of Animal Science, College of Agriculture & Natural Resources, ‎University of Tehran, Karaj, Iran

2 Professor, Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

3 Associated Professor, Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

4 Assistant Professor, Department of Research, Breeding and Production of Laboratory Animals, Razi Vaccine and Serum Research ‎Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Abstract

The aim of this study was to investigate the effect of curcumin on post-thawed sperm quality parameters and fertility of male broiler breeders. Twenty 49-week-old Ross 308 broiler roosters were randomly divided into four experimental groups (n=5). Different levels of curcumin including: 0 (T1), 10 (T2), 20 (T3) and 30 (T4) mg of curcumin/bird/day were supplemented to basal diet and fed to the birds from 49-61 weeks of age. After a 5-week of feeding curcumin (49-53 weeks), sperm quality was assessed for 6 weeks (54 to 59 weeks of age) following cryopreservation of semen samples. In order to evaluate fertility rate, the semen samples from weeks 60 and 61 were thawed and artificially inseminated into 68 broiler hens (n=17). Curcumin supplementation increased total motility in the T3 and T4 groups, and progressive motility in the T2, T3, and T4 groups compared to the T1 group (P<0.05). Feeding curcumin increased the viability of sperm in T3 and T4 groups compared to the T1 group (P<0.05). Plasma membrane functionality (HOS) was increased in all curcumin-treated birds compared to the control group (P<0.05); however, the highest performance was observed in T3 and T4 groups. Curcumin supplementation increased fertility rate in T3 and T4 groups compared to the T1 group. In general, the results of this study indicated positive effects of curcumin on sperm quality and fertility of broiler breeder roosters after thawing, and the best results were obtained when 20 or 30 mg of curcumin were fed daily for 13 weeks.

Keywords


  1. Abarikwu, S. O., Akiri, O. F., Durojaiye, M. A. & Alabi, A. F. (2014). Combined administration of curcumin and gallic acid inhibits gallic acid-induced suppression of steroidogenesis, sperm output, antioxidant defenses and inflammatory responsive genes. The Journal of Steroid Biochemistry and Molecular Biology, 143, 49-60.
  2. Ahmadi, F. (2010). Effect of turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broiler fed on diets containing aflatoxin B1. Global Veterinaria, 5(6), 312-317.
  3. Agarwal, A. (2003). Significance of oxidative stress and sperm chromatin damage in male infertility. Male Fertility and Lipid Metabolism,13, 157-183.
  4. Akhlaghi, A., Ahangari, Y. J., Zhandi, M. & Peebles, E. D. (2014). Reproductive performance, semen quality, and fatty acid profile of spermatozoa in senescent broiler breeder roosters as enhanced by the long-term feeding of dried apple pomace. Animal Reproduction Science, 147 (1-2), 64-73.
  5. Akinyemi, A. J., Adedara, I. A., Thome, G. R., Morsch, V. M., Rovani, M. T. & Mujica, K. S et al. (2015). Dietary supplementation of ginger and turmeric improves reproductive function in hypertensive male rats. Toxicology Reports, 2, 1357-1366.
  6. Alizadeh, F., Javadi, M., Karami, A. A., Gholaminejad, F., Kavianpour, M. & Haghighian, H.K. (2017). Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. Phytotherapy Research. pp. 1-8.
  7. Ansari, M., Zhandi, M., Kohram, H., Zaghari, M., Sadeghi, M. & Sharafi, M. (2017). Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid. Theriogenology, 92, 69-74.
  8. Ashok, P. & Meenakshi, B. (2004). Contraceptive effect of Curcuma longa (L.) in male albino rat. Asian Journal of Andrology, 6 (1), 71-74.
  9. Blesbois, E., Grasseau, I. & Seigneurin, F. (2005). Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction, 129 (3), 371-378.
  10. Borghei-Rad, S. M., Zeinoaldini, S., Zhandi, M., Moravej, H. & Ansari, M. (2017). Feeding rosemary leaves powder ameliorates rooster age-related subfertility. Theriogenology, 101, 35-43.
  11. Bucak, M. N., Başpınar, N., Tuncer, P. B., Coyan, K.; Sarıozkan, S. & Akalın, P. P. et al. (2012). Effects of curcumin and dithioerythritol on frozen‐thawed bovine semen. Andrologia, 44(s1), 102-109.
  12. Bucak, M. N., Sarıozkan, S., Tuncer, P. B., Sakin, F., Ateşşahin, A., Kulaksız, R. & Cevik, M (2010). The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Ruminant Research, 89(1), 24-30.
  13. Burrows, W. H. & Quinn, J. P. (1937): The collection of spermatozoa from the domestic fowl and turkey. Poultry Science, 16(1), 19-24.
  14. Cecil, H. C. & Bakst (1993). In vitro lipid peroxidation of turkey spermatozoa. Poultry Science, 72(7), 1370-1378.
  15. Chanapiwat, P. & Kaeoket, K. (2015). The effect of Curcuma longa extracted (curcumin) on the quality of cryopreserved boar semen. Animal Science Journal, 86 (9), 863-868.
  16. Chandra, A. K., Chatterjee, A., Ghosh, R. & Sarkar, M. (2007). Effect of curcumin on chromium-induced oxidative damage in male reproductive system. Environmental Toxicology and Pharmacology, 24 (2), 160-166.
  17. Daneshyar, M., Ghandkanlo, M. A., Bayeghra, F. S., Farhangpajhoh, F., Aghaei, M. (2011). Effects of dietary turmeric supplementation on plasma lipoproteins, meat quality and fatty acid composition in broilers. South African Journal of Animal Science, 41 (4), 420-428.
  18. Douard, V., Hermier, D., Magistrini, M., Labbe, C. & Blesbois, E. (2004). Impact of changes in composition of storage medium on lipid content and quality of turkey spermatozoa. Theriogenology,61(1), 1-13.
  19. Getachew, T. (2016). A review article of artificial insemination in poultry. World’s Veterinary Journal, 6, 25-33.
  20. Hammerstedt, R. H. & Graham, J. K. (1992). Cryopreservation of poultry sperm: the enigma of glycerol. Cryobiology 29 (1), pp. 26–38.
  21. Hamzavi, J. Z., Zolghadri, J. S., Hemayatkhah, V., Kargar J. H. & Erfanian, S. (2014). Protective effect of curcumin agains gamma-radiation on testis of Rats. Bimonthly Journal of Hormozgan University of Medical Sciences,18(2), 121-131. (in Farsi)
  22. Jeyendran, R. S., van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G. & Zaneveld, L. J.D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Journal of Reproduction and Fertility, 70(1), 219-228.
  23. Kazemizadeh, A., Zare Shahneh, A., Zinedine, S., Yousefi, A.R., Heidari Amale, M., Tavakkoli Alamouti, M. & Ansari Pirsaraei, M. (2018) The effect of Curcumin on plasma lipid profile and some sperm quality traits in broiler breeder roosters. Iranian Journal of Animal Science. (in Press, 82710)
  24. Leboeuf, B., Restall, B. & Salamon, S. (2000). Production and storage of goat semen for artificial insemination. Animal Reproduction Science, 62 (1-3), 113-141.
  25. Leeson, S. & Summers, J. D. (2009). Commercial poultry nutrition. Nottingham University Press. 2010. P. 21-47.
  26. Long, J. A. (2006). Avian semen cryopreservation: what are the biological challenges? Poultry Science, 85 (2), 232-236.
  27. Lukaszewicz, E., Jerysz, A., Partyka, A. & Siudzińska, A. (2008). Efficacy of evaluation of rooster sperm morphology using different staining methods. Research in Veterinary Science, 85(3), 5830-588.
  28. Mangiagalli, M. G., Martino, P. A., Smajlovic, T., Guidobono, C. L. & Marelli, S. P. (2010). Effect of lycopene on semen quality, fertility and native immunity of broiler breeder. British Poultry Science, 51(1), 152-157.
  29. Miquel, J., Bernd, A., Sempere, J. M., Dıaz-Alperi, J. & Ramırez, A. (2002). The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Archives of Gerontology and Geriatrics, 34(1), 37-46.
  30. Moghbeli, M., Kohram, H., Zare-Shahaneh, A., Zhandi, M., Sharafi, M. & Nabi, M. M. et al. (2016). Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm concentration? Cryobiology, 72(3), 264-268.
  31. Nabi, M. M., Kohram, H., Zhandi, M., Mehrabani-Yeganeh, H., Sharideh, H., Zare-Shahaneh, A. & Esmaili, V. (2016). Comparative evaluation of Nabi and Beltsville extenders for cryopreservation of rooster semen. Cryobiology, 72 (1), 47-52.
  32. Ogbuewu, I. P., Okehi, M. C. & Jiwuba, P. C. (2017). Effect of phytobiotic (turmeric) supplementation on semen and blood characteristics of rabbits. Comparative Clinical Pathology, 26(4), 817-822.
  33. Reddy, R. P. (1995). Artificial insemination of broilers: economic and management implications. International Information System for the Agricultural Science and Technology. Pp. 1-30.
  34. Roshankhah, S. H., Salahshoor; A. S., Jalili, F., Sohrabil, M. & Jalili, C. (2017). Effects of curcumin on sperm parameters abnormalities induced by morphine in rat. Journal of Medical and Biomedical Sciences, 6 (2), 1-10.
  35. Saeed, A. M., El-Nagar, H. A., Wafa, W. M. & Hussein, Y. S. (2016). Effect of Coenzyme Q10 as an Antioxidant Added to Semen Extender during Cryopreservation of Buffalo and Cattle Semen. Journal of Animal and Poultry Production, Mansoura University, 7(11), 403-408.‎
  36. Santiago-Moreno, J., Castano, C., Coloma, M. A., Gomez-Brunet, A., Toledano-Dlaz, A., Lopez-Sebastian, A. & Campo, J. L. (2009). Use of the hypo-osmotic swelling test and aniline blue staining to improve the evaluation of seasonal sperm variation in native Spanish free-range poultry. Poultry Science, 88 (12), 2661-2669.
  37. Sarabia, F. J., Pizarro D. M., Abad Moreno, J. C., Casanovas I. P., Rodriguez‐Bertos, A. & Barger, K. (2013). Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels). Reproduction in Domestic Animals, 48(2), 345-352.
  38. Shah, S. A.H., Andrabi, S. M.H. & Qureshi, I. Z. (2017). Freezability of water buffalo bull (Bubalus bubalis) spermatozoa is improved with the addition of curcumin (diferuoyl methane) in semen extender. Andrologia, 49(8), e12713.
  39. Shahverdi, A., Sharafi, M., Gourabi, H., Yekta, A. Amiri; Esmaeili, V. & Sharbatoghli, M.  et al. (2015). Fertility and flow cytometric evaluations of frozen-thawed rooster semen in cryopreservation medium containing low-density lipoprotein. Theriogenology, 83(1), 78-85.
  40. Srivastava, N. & Pande, M. (2016). Mitochondrion: features, functions and comparative analysis of specific probes in detecting sperm cell damages. Asian Pacific Journal of Reproduction, 5(6), 445-452.
  41. Soleimanzadeh, A. & Saberivand, A. (2013). Effect of curcumin on rat sperm morphology after the freeze-thawing process. Veterinary Research Forum, 4(3), 185-189.
  42. Tvrda, E., Tusimova, E., Kovacik, Anton Paal, D., Greifova, H., Abdramanov, A. & Lukac, N. (2016). Curcumin has protective and antioxidant properties on bull spermatozoa subjected to induced oxidative stress. Animal Reproduction Science, 172, 10-20.
  43. Yan, W., Kanno, C., Oshima, E., Kuzuma, Y., Kim, S. W. & Bai, H. et al. (2017). Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Animal Reproduction Science, 185, 195-204.
  44. Zhang, X., Berry, W. D., McDaniel, G. R., Roland, D. A., Liu, P., Calvert, C. & Wilhite, R. (1999). Body weight and semen production of broiler breeder males as influenced by crude protein levels and feeding regimens during rearing. Poultry Science, 78(2), 190-196.
  45. Zini, A., San Gabriel, M. & Baazeem, A. (2009). Antioxidants and sperm DNA damage: a clinical perspective. Journal of Assisted Reproduction and Genetics, 26(8), 427-432.