Evaluation the effect of feeding chelated from trace mineral on yield and composition of milk and blood parameters of early lactating Holstein cows

Document Type : Research Paper


1 M. Sc. Student in Ruminant Nutrition, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3 Associate Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

4 Sodour Ahrar Shargh Co., Tehran, Iran


The aim of this study was to investigate the effect of mineral supplementation and chelates of trace elements on production, milk composition and blood parameters of lactating Holstein cows. Lactating Holstein cows (n=24) were randomly assigned to one of the following four treatments; 1) the basic diet include inorganic trace minerals (C), 2) 55 mg of iron, 125 mg of copper, 360 mg of zinc, 3.5 mg of chromium, 200 mg of manganese, 2 mg of selenium and 12 mg of cobalt with daily feeding of 7 g of Bonzaplex7 chelated mineral supplement (B), 3) the same amount of zinc, manganese, copper and cobalt was supplied with 7 gr of organic trace mineral supplement Availa4 (A), 4) feeding 7 gr of Availa 4 plus 3.5 gr of Availa-Cr, 2 gr of Availa-Se, 1gr of Availa-Fe (A+3). This study lasted 35 days. Daily feed intake and milk production (3X) were recorded. In spite of more numerical increase in milk yield in treatment B, no effect was observed on the production of milk, milk composition, dry matter intake and rumen metabolites. Plasma glucose concentration in treatments tended to decrease (P=0.07). Plasma triglyceride concentration decreased significantly in treatments (A), (B), (A+3) compared to group (C), present results could be related to increase bioavailability of trace minerals in chelated form specially chromium and copper in present study.



    1. Abdel-Mageed, A. B. & Oehme, F. W. (1990). A review of the biochemical roles, toxicity and interactions of zinc, copper and iron: I. Zinc. Veterinary and Human Toxicology, 32 (1), 34-39.
    2. Abdollahi, M., Farshchi, A., Nikfar, Sh. & Seyedifar, M. (2013). Effect of chromium on glucose and lipid profiles in patients with type 2 diabetes; a meta-analysis review of randomized trials. Journal of Pharmacy & Pharmaceutical Sciences, 16(1), 99-114.
    3. Amata, I. A. (2013). Chromium in livestock nutrition: a review. Global Advanced Research Journal of Agricultural Science, 2 (12), 289-306.
    4. Ballantine, H. T., Socha, M. T., Tomlinson, Dpl Acan, D. J., Johnson, A. B., Fielding, A. S., Shearer, J. K. & van Amstel, S. R. (2002). Effects of feeding complexed zinc, manganese, copper, and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction, and lactation performance. The Professional Animal Scientist, 18(3), 211-218.
    5. Besong, S., Jackson, J., Trammell, S. & Amaral-Phillips, D. (1996). Effect of supplemental chromium picolinate on liver triglycerides, blood metabolites, milk yield and milk composition in early lactation cows. Journal of Dairy Science, 79 (Suppl 1), 97.
    6. Besong, S., Jackson, J. A., Trammell, D. S. & Akay, V. (2001). Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet1. Journal of Dairy Science, 84(7), 1679-1685.
    7. Chang, X., Mowat, D. N. & Spiers, G. A. (1992). Carcass characteristics and tissue-mineral contents of steers fed supplemental chromium. Canadian Journal of Animal Science, 72 (3), 663-669.
    8. Cope, C. M., Mackenzie, A. M., Wilde, D. & Sinclair, L. A. (2009). Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92(5), 2128-2135.
    9. Correa, L. B., Zanetti, M. A., Del Claro, G. R., de Melo, M. P., Rosa, A. F. & Netto, A. S. (2012). Effect of supplementation of two sources and two levels of copper on lipid metabolism in Nellore beef cattle. Meat Science, 91(4), 466-471.
    10. National Research Council. (2001). Nutrient requirements of dairy cattle. (7th rev. Ed.). National Academy of Sciences, Washington, DC.
    11. National Research Council. (1997). The role of chromium in Animal nutrition. National Academy Press, Washington, DC.
    12. Crooke, W. M. & Simpson, W. E. (1971). Determination of ammonium in Kjeldahl digests of crops by an automated procedure. Journal of the Science of Food and Agriculture, 22(1), 9-10.
    13. Dallago, B. S. L., McManus, C. M., Caldeira, D. F., Lopes, A. C., Paim, T. P., Franco, E., Borges, B. O., Teles, P. H. F., Correa, P. S. & Louvandini, H. (2011). Performance and ruminal protozoa in lambs with chromium supplementation. Research in Veterinary Science, 90 (2), 253-256.
    14. Engle, T. E. (2011). Copper and lipid metabolism in beef cattle. A review. Journal of Animal Science, 89(2), 591-596.
    15. Erdogan, S., Celik, S. & Erdogan, Z. (2004). Seasonal and locational effects on serum, milk, liver and kidney chromium, manganese, copper, zinc, and iron concentrations of dairy cows. Biological Trace Element Research, 98(1), 51-61.
    16. Fraga, C. G. (2005). Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 26 (4), 235-244.
    17. Hackbart, K. S., Ferreira, R. M., Dietsche, A. A., Socha, M. T., Shaver, R. D., Wiltbank, M. C. & Fricke, P. M. (2010). Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. Journal of Animal Science, 88 (12), 3856-3870.
    18. Haldar, S., Mondal, S., Samanta, S. & Ghosh, T. K. (2009). Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against pestedespetitsruminants in dwarf Bengal goats (Capra hircus). Animal, 3 (2), 209-217.
    19. Hassan, A. A., El Ashry, G. M. & Soliman, S. M. (2011). Effect of supplementation of chelated zinc on milk production in ewes. Food and Nutrition Sciences, 2 (7), 706.
    20. Hayirli, A., Bremmer, D. R., Bertics, S. J., Socha, M. T. & Grummer, R. R. (2001). Effect of chromium supplementation on production and metabolic parameters in periparturient dairy cows. Journal of Dairy Science, 84(5), 1218-1230.
    21. Kegley, E. B., Galloway, D. L. & Fakler, T. M. (2000). Effect of dietary chromium-l-methionine on glucose metabolism of beef steers. Journal of Animal Science, 78 (12), 3177-3183.
    22. Kegley, E. B., Pass, M. R., Moore, J. C. & Larson, C. K. (2012). Supplemental trace minerals (zinc, copper, manganese, and cobalt) as Availa-4 or inorganic sources for shipping-stressed beef cattle. The Professional Animal Scientist, 28(3), 313-318.
    23. McNamara, J. P. & Valdez, F. (2005). Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. Journal of Dairy Science, 88 (7), 2498-2507.
    24. Mostafa-Tehrani, A., Ghorbani, G., Zare-Shahneh, A. & Mirhadi, S. A. (2006). Non-carcass components and wholesale cuts of Iranian fat-tailed lambs fed chromium nicotinate or chromium chloride. Small Ruminant Research, 63 (1), 12-19.
    25. Nemec, L. M., Richards, J. D., Atwell, C. A., Diaz, D. E., Zanton, G. I. & Gressley, T. F. (2012). Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. Journal of Dairy Science, 95 (8), 4568-4577.
    26. Nunnery, G. A., Vasconcelos, J. T., Parsons, C. H., Salyer, G. B., Defoor, P. J., Valdez, F. R. & Galyean, M. L. (2007). Effects of source of supplemental zinc on performance and humoral immunity in beef heifers. Journal of Animal Science, 85 (9), 2304-2313.
    27. Paripatananont, T. & Lovell, R. T. (1995). Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture, 133 (1), 73-82.
    28. Roche, J. R., Bell, A. W., Overton, T. R. & Loor, J. J. (2013). Nutritional management of the transition cow in the 21st century–a paradigm shift in thinking. Animal Production Science, 53(9), 1000-1023.
    29. Sobhanirad, S., Carlson, D. & Kashani, R. B. (2010). Effect of zinc methionine or zinc sulfate supplementation on milk production and composition of milk in lactating dairy cows. Biological Trace Element Research, 136 (1), 48-54.
    30. Wang, F., Li, S. L., Xin, J., Wang, Y. J., Cao, Z. J., Guo, F. C. & Wang, Y. M. (2012). Effects of methionine hydroxy copper supplementation on lactation performance, nutrient digestibility, and blood biochemical parameters in lactating cows. Journal of Dairy Science, 95 (10), 5813-5820.
    31. Wildman, E. E., Jones, G. M., Wagner, P. E., Boman, R. L., Troutt, H. F. & Lesch, T. N. (1982). A dairy cow body condition scoring system and its relationship to selected production characteristics. Journal of Dairy Science, 65 (3), 495-501.
    32. Yan, X., Zhang, W., Cheng, J., Wang, R., Kleemann, D. O., Zhu, X. & Jia, Z. (2008). Effects of chromium yeast on performance, insulin activity, and lipid metabolism in lambs fed different dietary protein levels. Asian Australasian Journal of Animal Sciences, 21(6), 853.