The evaluation of breeding strategies in Mazandaran native fowls using computer simulation

Document Type : Research Paper

Authors

1 Ph.D. Candidate, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

2 Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

3 Assistant Professor, Department of Animal and Poultry Science, Aburaihan Campus, University of Tehran, Iran

4 Assistant Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

Abstract

The aim of the study was to compare two strategies in Mazandaran native fowls using computer simulation.  Simulated traits included body weight at birth (BW1), at eight weeks of age (BW8), at twelve weeks of age (BW12), at maturation (BWM), age at sexual maturity (AFE), weight of first egg (EWM), mean egg weight from 28 to 32 weeks of age (EW28-32) and egg number (EN). The first strategy was to select cockerels based on breeding value of BW12 and hens based on a selection index with 4-traits including BW12, AFE, EW28-32 and EN. The second strategy was to select cockerels and hens using a selection index based on a 4-traits including BW12, AFE, EW28-32 and EN. After 10 generations, the first strategy improved BW1, BW12, BWM, EW28-32 and EWM to 1.49, 573.81, 397.58, 3.96, and 3.75 grams and AFE and EN to -3.51 days and 2.09 eggs, respectively. After 10 generations, the gain for traits in the second strategy for BW12, BWM, AFE and EN was 415.78, 218.74 grams and -9.77 days and 9.45 eggs, respectively. At the end of the tenth generation increase of inbreeding in the first and second strategies was 0.048 and 0.070, respectively.  The results showed that the first strategy was suitable for a breeder flocks with the aim of chickens suitable for broiler production and the second strategy was suitable for a dual-purpose flocks with the aim of producing egg and meat.

Keywords


  1. Azin Najd, E. & Mehmannavaz, Y. (2016). Analysis of genetic diversity in Iranian West Azerbaijan native fowl using pedigree data. Genetics in the 3th Millennium, 14(2), 4270-4277.
  2. Caballero, A., Santiago, E. & Toro, M. A. (1996). Systems of mating to reduce inbreeding in selected populations. Journal of Animal Science, 62, 431-443.
  3. Calik, J. (2011). Genetic and production trends in New Hampshire laying hens over 8 generations. Acta Scientiarum Polonorum. Zootechnica10(3).
  4. Camci, O., Erensayin, C. & Aktan, S. (2002). Relations between age at sexual maturity and some production characteristics in quails. J. Arch.Geflugelk, 66, 280-282.
  5. Cassady, J. & Robison, O. W. (2010). Genetic parameters and their use in swine breeding. Pork Ind. Handbook. Purdue University Press, 1, 429-432.
  6. Chen, G. K., Marjoram, P. & Wall, J. D. (2009). Fast and flexible simulation of DNA sequence data. Genome research, 19, 136-142.
  7. Dadpasand Taremsari, M. (1999). Study of genetic trends for production traits of Holstein cattle in Iran. M.Sc. thesis. Tehran University, Iran.
  8. Dagnachew, B. S. & Meuwissen, T. H. (2014). An Iterative Algorithm for Optimal Contribution Selection in Large Scale Breeding Program. In: Proceedings of the 10th WCGALP, Aug., Vancouver, pp 23-25.
  9. Du Plessis, P. H. C. & Erasmus, J. (1972). The relationship between egg production, egg weight and body weight in laying hens. World's Poultry Science Journal28(3), 301-310.
  10. Ebrahimzadeh-Allahabad1, A., Mahmodian, Z., Pezeshkian, Z. & Mollaei, A. (2015). Estimation of genetic and phenotypic parameters of some important economic traits in Khazak native hen in Iran. Animal Genetic Resources, 57, 99-103.
  11. El-Dlebshany, A. E. (2008). The relationship between age at sexual maturity and some productive traits in local chickens strain. Egypt Poult Science28(4), 1253-1263.
  12. Emamgholi Begli, H., Zerehdaran, S., Hassani, S. & Abbasi M. A. (2011). Estimation of genetic parameters for important economic traits on Yazd native fowl. Iranian Journal of Animal Science, 4, 67-70. (in Farsi)
  13. Fairfull, R. W., McMillan, I. M.  & Muir, W. M. (1998). Poultry breeding: Progress and prospects for genetic improvement of egg and meat production. In: Proceedings of 6th World Congress on Genetics Applied to Livestock Production, pp 271-278.
  14. Falconer, D. S. (1981). Introduction to Quantitative Genetics (2th Ed.). Longman; London and New York.
  15. Foroutanifar, S., Mehrbani Yeganeh, H. & Moradi Shahrbabak, M. (2013). Comparison of the accuracy of the estimated traditional and genomic breeding values using single and multi-trait analyses. Iranian Journal of Animal Science, 43, 497-504. (in Farsi)
  16. Gaynor, R. C., Gorjanc, G. & Wilson, D. L. AlphaSimR: An R Package for Breeding Program Simulations. Manuscr Prep.
  17. Gharahdaghi, A. A., Ghorbani, Sh., Kamali, M. A. & Abbasi, M. A. (2014). Estimation of parameters and genetic trend of economic traits in native chickens of West Azerbaijan province. Animal Sciences Journal (Pajouhesh & Sazandegi), 104, 243-254. (in Farsi)
  18. Ghorbani, S. H. & Kamali, M. A. (2007). Genetic trend in economic traits in Iranian native fowl. Pakistan Journal of Biological Science, 10, 3215-3219.
  19. Gibson, J. P. (1995). An Introduction to the design and economics of animal breeding strategies. Ph.D. Thesis. University of Guelph. Canada.
  20. Gorbani, S. & Gharedaghi, A. A. (2017). Estimation heritability and genetic trend of some economic traits of Esfahan Native fowls. Animal Sciences Journal (Pajouhesh & Sazandegi), 118, 85-98. (in Farsi)
  21. Greenacre, B. C. & Morishita, T. Y. (2015). Backyard Poultry Medicine and Surgery: A Guide for Veterinary Practitioners. (1st Ed.). John Wiley & Sons, Inc. Iowa, USA.
  22. Haldane, J. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. Genetics, 8, 299-309.
  23. Hazel, L. N. (1943) the genetics basis for constructing selection indexes. Genetics, 28, 476-490.
  24. Hudson, R. R. (2004). ms a program for generating samples under neutral models. Bioinformatics, 18, 337-338.
  25. Jafarnejad, A., Kamali, M. A., Fatemi, S. J. & Aminafshar, M. (2017). Genetic evaluation of laying traits in Iranian indigenous hens using univariate and bivariate animal models. The Journal of Animal & Plant Sciences, 27(1), 20-27.
  26. Jilani, M. H., Singh, C. B., Sharma, R. K. & Brijesh, S. (2007). Genetic studies on some economic traits of Rhode Island Red. Indian Journal of Poultry Science, 42(1), 50-62.
  27. Kianimanesh, H. R., Nejati, A. & Rahimi, G. (2001). Estimation of economic indices for production traits of Iranian native fowls. In: Proceedings of the first seminar of Genetic, animal breeding, poultry and aquaculture. Iran, pp. 283-288. (in Farsi)
  28. Lacy, R. C. (1989). Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biology, 8(2), 111-123.
  29. Lwelamira, J., Kifaro, G. C. & Gwakisa, P. S. (2008). On station and on-farm evaluation of two Tanzania chicken ecotypes for body weights at different ages and for egg production. African Journal of Agricultural Research, 3(12), 843-851.
  30. Medrano, J. F., Ahmadi, A. & Casellas, J. (2010). Dairy cattle breeding simulation program: a simulation program to teach animal breeding principles and practices. Journal of Dairy Science, 93, 2816-2826.
  31. Meuwissen, T. H. E. (1997). Maximizing the response of selection with a predefined rate of inbreeding. Journal of Animal Science, 75, 934-940.
  32. Morris, A. J. & Pollott, G. E. (1997). Comparison of selection based on phenotype, selection index and best linear unbiased prediction using data form a closed broiler line. British Poultry Science, 38, 249-254.
  33. Mrode, R. & Thompson, R. (2005). Linear models for the prediction of animal breeding values. CABI.
  34. Muir, W. M., Wong, G. K. S., Zhang, Y., Wang, J., Groenen, M. A. M., Crooijmans, R. P. M. A., Megens, H. J., Zhang, H., Okimoto, R., Vereijken, A., Jungerius, A., Albers, G. A. A., Lawley, C. T., Delany, M. E., MacEachern, S. & Cheng, H. H. (2008). Genomewide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings of the National Academy of Sciences USA, 105, 17312-17317.
  35. Nielsen, H., Roos, N. & Thilsted, S. H. (2003). The impact of semi-scavenging poultry production on the consumption of animal source food by women and girls in Bangladesh. Journal of Nutrition, 133, 4027-4030.
  36. Pedersen, C. V. (2002). Productivity of semi-scavenging chickens in Zimbabwe. Ph.D. hesis. The Royal Veterinary and Agricultural University (RVAU), Denmark.
  37. Rahmanian, A., Hafezian, H., Rahimi, G. H., Farhadi, A. & Baneh, H. (2015). Inbreeding depression for economically important traits of Mazandaran native fowls. British Poultry Science, 56, 1-8.
  38. Rutten, M. J. M., Bijma, P., Woolliams, J. A. & Arendonk, J. A. M. (2002). SelAction: software to predict selection response and rate of inbreeding in livestock breeding programs. The Journal of Heredity, 93, 456-458.
  39. Schmidt, G. S. & Figueiredo, E. A. P. (2005). Selection for reproductive traits in white egg stock using independent culling levels. Brazilian Journal of Poultry Science7(4), 231-235.
  40. Shadparvar, A. A. & Enayati, B. (2012). Genetic parameters for body weight and laying traits in Mazandaran native breeder hens. Iranian Journal of Appl. Animal Science, 2, 251-256.
  41. Sokolowicz, Z., Krawczyk, J. & Swiątkiewicz, S. (2016). Quality of poultry meat from native chicken breeds - a review. Ann. Anim. Sci, 16, 347-368.
  42. Sun, X., Peng, T. & Mumm, R. H. (2011). The role and basics of computer simulation in support of critical decisions in plant breeding. Molecular Breeding28(4), 421-436.
  43. Taghizadeh, M., Poorabasali, N., Taghizadeh, M. & Sepahvand, B. (2016). Applied management native hen production in rural and industrial. (1st Ed.). Tak Publication. (in Farsi)
  44. van Wyk, J. B., Fair, M. D. & Cloete, S. W. P. (2009). The effect of inbreeding on the production and reproduction traits in the Elsenburg Dormer sheep stud. Livestock Science, 120(3), 218-24.
  45. Wolc, A. (2014). Understanding genomic selection in poultry breeding. World's Poultry Science Journal, 70, 309-314.