Effects of betaine supplementation and B12 injection during the transition period on serum metabolite in dairy cows

Document Type : Research Paper

Authors

1 Associate Professor, Faculty of Agriculture, University of Lorestan, Khorram-Abad, Iran

2 Assistant Professor, Faculty of Agriculture, University of Ilam, Iran

3 Ph. D. Candidate, Faculty of Agriculture, University of Lorestan, Khorram-Abad, Iran

Abstract

The objective of this study was to evaluate the effects of betaine supplementation (B-SUP) and vitamin B12 injection (VI-B12) during the transition period on serum metabolites in dairy cows. Thirty-two over conditioned multiparous Holstein cows assigned into 1 of 4 diets containing: CB (VI-B12), BC (50 g/day B-SUP), BB (VI-B12+ 50 g/day B-SUP) and control (CC) form 21 d before parturition (dbp) to 21 d postparturation (dpp). Blood sample was collected at -7, 2 and 42 dpp to determine serum metabolites of dairy cowand neonatal calves. The serum metabolites were not affected by experimental treatments (P>0.05), except for glucose which was greater in BC and CB as compared to CC and CB treatments (P<0.05). Among enzymatic indexes, a significant decrease was just showed in BB treatment as compared to CB treatment for GGT enzyme (p <0.05). Also, serum metabolites in neonatal calves were not influenced by experimental treatments (P>0.05). In conclusion, B-SUP and VI-B12 improved just glucose amount without any change in other blood parameters. Anyway, more researches can be give suitable results to us, particular if the protected form of the betaine is used.

Keywords


  1. Ahn, K. & Aggarwal, B. (2005). Transcription factor NF-kB: a sensor for smoke and stress signals. Annals of the New York Academy of Sciences, 1056, 218-33.
  2. Banskalieva, V., Puchala, R., Goetsch, A. L., Luo, J. & Sahlu, T. (2005). Effects of ruminally protected betaine and choline on net flux of nutrients across the portal-drained viscera and liver of meat goat wethers consuming diets differing in protein concentration. Small Ruminant Research, 57(2), 193-202.
  3. Barak, A. J., Beckenhauer, H. C. & Tuma, D. J. (1996). Betaine, ethanol, and the liver: a review. Alcohol, 13, 395-398.
  4. Butler, W. R. & Smith, R. D. (1989). Interrelationships between energy balance and postpartum reproductive function in dairy cattle. Journal of Dairy Science, 72(3), 767-783.
  5. Carlson, D. B., McFadden, J. W., D’Angelo, A., Woodworth, J. C. & Drackley, J. K. (2007). Dietary l-carnitine affects periparturient nutrient metabolism and lactation in multiparous cows. Journal of Dairy Science, 90, 3422-41.
  6. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D. & Maniatis, T. (1995). Transcriptional regulation of endothelial cell adhesionmolecules: NF- kappa B and cytokine-inducible enhancers. FASEB Journal, 9, 899-909.
  7. Davidson, S., Hopkins, B. A., Odle, J. Brownie, C., Fellner, V. & Whitlow, L. W. (2008). Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. Journal of Dairy Science, 91(4), 1552-1559.
  8. Douglas, G. N., Overton, T. R., Bateman, H. G., Dann, H. M. & Drackley, J. K. (2006). Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient metabolism and dry matter intake in Holstein cows. Journal of Dairy Science, 89(6), 2141-2157.
  9. Duffield, T. (2000). Subclinical ketosis in lactating dairy cattle. Veterinary Clinics of North America: Food Animal Practice, 16(2), 231-253.
  10. Eklund, M., Bauer, E., Wamatu, J. & Mosenthin, R. (2005). Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Reviews, 18(01), 31-48.
  11. Fernandez, F. M., Conner, M. E., Hodgins, D. C., Parwani, A. V., Nielsen, P. R., Crawford, S. E. & Saif, L. J. (1998). Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like particle (VLP) vaccines. Vaccine, 16(5), 507-516.
  12. Fernández, C., Sánchez-Seiquer, P., Sánchez, A., Contreras, A. & de la Fuente, J. M. (2004). Influence of betaine on milk yield and composition in primiparous lactating dairy goats. Small Ruminant Research, 52(1), 37-43.
  13. Fernández-García, A., Risco-Castillo, V., Pedraza-Díaz, S., Aguado-Martínez, A., Álvarez-García, G., Gómez-Bautista, M. & Ortega-Mora, L. M. (2009). First isolation of Besnoitia besnoiti from a chronically infected cow in Spain. Journal of Parasitology, 95(2), 474-476.
  14. Girard, C. L. & Matte, J. J. (1999). Changes in serum concentrations of folates, pyridoxal, Pyridoxal-5-phosphate and vitamin B12 during lactation of dairy cows fed dietary supplements of folic acids. Can. Journal Animal Science, 79, 107-113.
  15. Girard, C. L. & Matte, J. J. (2005). Effects of intramuscular injections of vitamin B 12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. Journal of Dairy Science, 88(2), 671-676.
  16. Grummer, R. R. (1995). Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. Journal of Animal Science, 73(9), 2820-2833.
  17. Gryzunov, Y. A., Arroyo, A., Vigne, J. L., Zhao, Q., Tyurin, V. A. & Hubel, C. A. (2003). Binding of fatty acids facilitates oxidation of cysteine-34 and converts copper–albumin complexes from antioxidants to prooxidants. Arch Biochemist Biophysics, 413, 53-66.
  18. Hall, L. W. (2014). The evaluation of dietary betaine, pre and probiotics, transitional substrates, and β-mercaptoacetate on physiological, metabolic, hormonal and production responses in lactating Holstein cows subjected to thermal stress. The University of Arizona.
  19. Hall, L., Dunshea, F., Allen, J., Rungruang, S., Collier, J., Long, N. & Collier, R. (2016). Evaluation of dietary betaine in lactating Holstein cows subjected to heat stress. Journal of Dairy Science, 99(12), 9745-9753.
  20. Kim, Sang, K. & Young, C. K. (2002). Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats. Food and Chemical Toxicology, 40(4), 545-549.
  21. Kim, I. H. & Suh, G. H. (2003). Effect of the amount of body condition loss from the dry to near calving periods on the subsequent body condition change, occurrence of postpartum diseases, metabolic parameters and reproductive performance in Holstein dairy cows. Theriogenology, 60(8), 1445-1456.
  22. Klasing, K. C., Adler, K. L., Remus, J. C. & Calvert, C. C. (2002). Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. The Journal of nutrition, 132(8), 2274-2282.
  23. Mulligan, F. J. & Doherty, M. L. (2008). Production diseases of the transition cow. The Veterinary Journal, 176(1), 3-9.
  24. Pinotti, L., Baldi, A., Politis, I., Rebucci, R., Sangalli, L. & Dell’orto, V. (2003). Rumen protected choline administration to transition cows: Effect on milk production and vitamin E status. Transboundary and Emerging Diseases, 50, 18-21.
  25. Rico, J. E., Bandaru, V. V. R., Dorskind, J. M., Haughey, N. J. & McFadden, J. W. (2015). Plasma ceramides are elevated in overweight Holstein dairy cows experiencing greater lipolysis and insulin resistance during the transition from late pregnancy to early lactation. Journal of Dairy Science, 98(11), 7757-7770.
  26. SAS Institute. 2003. User’s Guide: Statistics. Version 9.1. SAS Inst., Inc., Cary, NC.
  27. Simon, J. (1999). Choline, betaine and methionine interactions in chickens, pigs and fish (including crustaceans). World's Poultry Science Journal, 55(04), 353-374.
  28. Siavoshian, S., Segain, J. P., Kornprobst, M., Bonnet, C., Cherbut, C., Galmiche, J. P. & Blottiere, H. M. (2000). Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut, 46(4), 507-514.
  29. Van Den Top, A. M., Wensing, T., Geelen, M. J. H., Wentink, G. H., Van’t Klooster, A. T. & Beynen, A. C. (1995). Time trends of plasma lipids and enzymes synthesizing hepatic triacylglycerol during postpartum development of fatty liver in dairy cows. Journal of Dairy Science, 78, 2208-2220.
  30. Walsh, R. B., Walton, J. S., Kelton, D. F., LeBlanc, S. J., Leslie, K. E. & Duffield, T. F. (2007). The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. Journal of Dairy Science, 90(6), 2788-2796.
  31. Wang, L-J., Zhang, H-W., Zhou, J-Y., Liu, Y., Yang, Y., Chen, X-L., Zhu, C-H., Zheng, R-D., Ling, W-H. & Zhu, H-L. (2014). Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet. The Journal of Nutritional Biochemistry, 25(3), 329-336.
  32. Zhang, F., Warskulat, U., Wessstein, M., Haussinger, D., 1996. Identification of betaine as an osmolyte in rat liver macrophages (Kupffer cells). Gastroenterology, 110, 1543-1552.
  33. Zhang, L., Ying, S. J., an, W. J., Lian, H., Zhou, G. B. & Han, Z. Y. (2014). Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow. Genetics and Molecular Research, 13(3), 7577-7586.
  34. Zom, R., Van Baal, J., Goselink, R., Bakker, J., De Veth, M. & Van Vuuren, A. (2011). Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. Journal of Dairy Science, 94(8), 4016-4027.