Effects of of monensin supplementationalone or in combination with Methafix on ruminal fermentation and fatty acids composition of Longissimus Dorsi muscle in Farahani finishing lambs

Document Type : Research Paper


1 M. Sc. Student, Department of Animal Science, Lorestan University, Iran

2 Associate Professor, Department of Animal Science, Lorestan University, Iran

3 Assistant Professor, Department of Animal Science, Lorestan University, Iran


This study was conducted to evaluate the effects of dietary inclusion of monensin alone or in combination with Methafix (a commercial product containing malate and fumarate) on rumen fermentation parameters and fatty acids composition of longissimus dorsi muscle (LD) of Farhani finishing lambs. Twenty four male Farhani lambs (4-6 months old, average body weight 35.9 ± 7.4 kg) were used. The lambs were randomly divided into four groups and individually fed with one of the four dietary treatments; control diet (Control), Control plus 24 mg of monensin/kg of DM (Monensin), control plus 4 g of Methafix/kg DM (Metafix) and Control plus 24 mg of monensin and 4 g of Methafix/kg DM (MonMet). Results showed that Monensin and/or MonMet decreased acetate (P<0.05) but increased propionate in comparision with control (P<0.05). Monensin, Metafizx and MonMetall had higher concentrations of lauric, myristic and margaric acids than control (P<0.05). However, palmitic, stearic and behenic acids content of LD were decreased by dietary supplementation with Monensin and metafix (P<0.05). Dietary treatments had no effect on LM concentrations of all mono-unsaturated fatty acids (except for nervonic acid), eicosatetraenoic, arachidonic, eicosaenoic and α-linoleic acids (P>0.05). However, dietary supplementation with M and ME increased LM concentrations of docosahexaenoic, docosatetraenoic, eicosapentaenoic and omega-3 fatty acids in comparison with control (P<0.05). In conclusion, both monensin and metafix seems to be promising agents for manipulation of rumen fermentation and fatty acid composition of meat in fattening Farahani lambs, however for revealing their functional mechanisms further research is needed.


  1. Carrasco, C., Medel, P., Fuentetaja, A. & Carro, M. D. (2012). Effect of malate form (acid or disodium/calcium salt) supplementation on performance, ruminal parameters and blood metabolites of feedlot cattle. Animal Feed Science and Technology, 176, 140-149.
  2. Carro, M. D. & Ranilla, M. J. (2003). Effect of the addition of malate on in vitro rumen fermentation of cereal grains. British Journal of Nutrition, 89, 181-188.
  3. Carro, M. D., Ranilla, M. J., Giráldez, F. J. & Mantecón, A. R. (2006). Effects of malate on diet digestibility, microbial protein synthesis, plasma metabolites, and performance of growing lambs fed a high-concentrate diet. Journal of animal science, 84, 405-410.
  4. Castillo, C., Benedito, J. L., Méndez, J., Pereira, V., Lopez-Alonso, M., Miranda, M. & Hernández, J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115(1), 101-116. 
  5. Chilliard, Y. (1993). Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents; A review. Journal of Dairy Science, 76, 3897-3931.
  6. Dohme, F., Fievez, V., Raes, K. & Demeyer, D. I. (2003). Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro. Animal Research, 52, 309-320.
  7. Duffield, T. F., Rabiee, A. R. & Lean, I. J. (2008). A Meta-Analysis of the impact of monensin in lactating dairy cattle. Part 1. Metabolic effects. Journal of Dairy Science, 91, 1334-1346.
  8. Eifert, E. C., Lana, R. P., Lanna, D. P. D., Leopoldino, W. M., Arcuri, P. B., Leão, M. I., Cota, M.R. & Valadares Filho, S.C. (2006). Perfil de ácidos graxos do leite de vacas alimentadascom óleo de soja e monensina no início da lactação. Revista Brasileira de Zootecnia, 35, 219-228.
  9. Fellner, V., Sauer, F. D. & Kramer, J. K. G. (1997). Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters. Journal of Dairy Science, 80, 921-928.
  10. Harfoot, C. G. & Hazlewood, G. P. (1997). Lipid metabolism in the rumen. In The rumen microbial ecosystem (pp. 382-426). Springer Netherlands.
  11. Hernandez, F., Madrid, J., Garcia, V., Orengo, J. & Megias, M. D. (2004). Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poultry Science, 83, 169-174.
  12. Ipharraguerre, I. R. & Clark, J. H. (2003). Soyhulls as an alternative feed for lactating dairy cows: a review. Journal of Dairy Science, 86, 1052-1073.
  13. Ladeira, M. M., Santarosa, L. C., Chizzotti, M. L., Ramos, E. M., Neto, O. M., Oliveira, D. M. & Ribeiro, J. S. (2014). Fatty acid profile, color and lipid oxidation of meat from young bulls fed ground soybean or rumen protected fat with or without monensin. Meat science, 96, 597-605.
  14. Malekkhahi, M., Tahmasbi, A. M., Naserian, A. A., Danesh Mesgaran, M., Kleen, J. L. & Parand, A. A. (2015). Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high‐concentrate diets. Journal of Animal Physiology and Animal Nutrition, 99, 221-229.
  15. Martini, M., Verità, P., Cecchi, F. & Cianci, D. (1996). Monensin sodium use in lambs from the second week of life to slaughter at 105 days. Small Ruminant Research, 20, 1-8.
  16. Mohammed, N., Lila, Z. N., Ajisaka, N., Hara, K., Mikuni, K., Hara, K., Kanda, S. & Itabashi., H. (2004). Inhibition of ruminal microbial methane production by cyclodextrin iodopropane, malate and their combination in vitro. Journal of Animal Physiology and Animal Nutrition, 88, 188-195.
  17. Najafi, M. H., Zeinoaldini, S., Ganjkhanlou, M. & Mohammadi, H. (2013). Effect of Dietary N-6 and N-3 Fatty Acid Sources on the Quality and Fatty Acid Profile of Longissimus Muscle in Goat Kids. Iranian Journal of Animal Science, 43(4), 553-560. (in Farsi)
  18. Nisbet, D. J. & Martin, S. A. (1991). Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal. Journal of Animal Science, 69, 4628-4633.
  19. NRC. (2007). Nutrient Requirements of small ruminants; sheep, goat, cervids, and new world camelids. Washington. D.C. National Academy Press.
  20. Raes, K., De Smet, S. & Demeyer, D. (2004). Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Animal Feed Science and Technology, 113, 199-221.
  21. SAS Institute. (2003). SAS/STAT® Guide for personal computers. Version 9.1 Edition. SAS   Institute, Inc., Cary, NC.
  22. Scollan, N. D., Choi, N. J., Kurt, E., Fisher, A. V., Enser, M. & Wood, J. D. (2001). Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. British Journal of Nutrition, 85, 115-124.
  23. Silva-Kazama, D. C. D., Santos, G. T. D., Pintro, P. T. M., Visentainer, J. V., Kazama, R., Petit, H. V. & Marchi, F. E. D. (2010). Effect of storage on fatty acid profile of butter from cows fed whole or ground flaxseed with or without monensin. Revista Brasileira de Zootecnia, 39, 2297-2303.
  24. Song, M. K., Jin, G. L., Ji, B. J., Chang, S. S., Jeong, J., Smith, S. B. & Choi, S. H. (2010). Conjugated linoleic acids content in M. longissimus dorsi of Hanwoo steers fed a concentrate supplemented with soybean oil, sodium bicarbonate-based monensin, fish oil. Meat Science, 85, 210-214.
  25. Williams, C. M. & Burdge, G. (2006). Long-chain n-3 PUFA: plant v. marine sources. Page 42.
  26. Zhou, Y. W., McSweeney, C. S., Wang, J. K. & Liu, J. X. (2012). Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets. Animal, 6(05), 815-823.