Molecular study of mitochondrial electron transport chain genes in Iranian single and double humped camels

Document Type : Research Paper

Authors

1 M.Sc. Student, Animal Genetics and Breeding, department of Animal science, Faculty of agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Professor of Animal Genetics and Breeding, department of Animal science, Faculty of agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

3 Assistant Professor of Animal Genetics and Breeding, department of Animal science, Faculty of agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The present study aimed to determine the sequence of mitochondrial DNA genes encoding NADH dehydrogenase subunits 1, 5 and 6, cytochrome c oxidase subunit 1 and ATP synthase subunit 6 in the Iranian single and doublehumped camels. In this study, 10 Dromedary blood samples from Mashad slaughter house, and 15 blood Bacterian camel's Meshkinshahr Breeding Center samples from were collected. After DNA extraction, the regions of mtDNA was amplified by PCR and sequenced by chain termination method. Results showed that, the energy-related mitochondrial genes showed amino acid substitutions according to their roles in energy metabolism in both camels. ATP6 acquired the greatest changes because it controls the majority of energy production, and the COX1 acquired the lowest changes. The phylogenetic test results showed that Iranian camels have the lowest genetic distance with Arabian camels. Furthermore, it can be concluded that using either individual genes or a set of genes to draw a phylogenetic tree will lead to the same result. Therefore, to perform phylogenetic studies, we can propose that using only one of these genes can generate a tree, which represents a group of genes.

Keywords


  1. Aderson, S., Bankiev, A. T., Barrell, B. G. & DeBruijn, M. H. L. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290,457-65.
  2. Ahmed, M., El-Shazly, S., Sayed, S. & Amer, S. (2013). Molecular study of energy related mitochondrial genes in Arabian and Bactrian camels. American Journal of Biochemistry and Biotechnology, 9(1), 61-70.
  3. Asakawa, S., Kumazawa, Y., Araki, T., Himeno, H. & Miura, K. (1991). Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. Journal of Molecular Evolution, 32, 511-520.
  4. Bridges, H. R., Fearnley, I. M. & Hirst, J. (2010). The Subunit Composition of Mitochondrial NADH: Ubiquinone Oxidoreductase (Complex I) From Pichia pastoris. Molecular & Cellular Proteomics, 9, 2318-2326.
  5. Bruford, M., Bradley, D. & Luikart, G. (2003). DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 3, 900-910.
  6. Chen, Y.F., Kao, C.H., Chen, Y.T., Wang, C.H. & Wu, C.Y. (2009). Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes & Development, 23,1183-1194.
  7. Feldkamp, T., Kribben, A.  & Weinberg, J.M. (2005). F1FO-ATPase activity and ATP dependence of mitochondrial energization in proximal tubules after hypoxia/reoxygenation. Journal of the American Society of Nephrology, 16, 1742-1751.
  8. Fonseca, R. R. D., Johnson, W. E., O'Brien, S. J., Ramos, M. J. & Antunes, A. (2008). The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 9, 119.
  9. Kadim, I. T., Mahgoub, O., Al-Maqbaly, R. S., Annamalai, K. & Al-Ajmi, D. S.  (2002). Effects of age on fatty acid composition of the hump and abdomen depot fats of the Arabian camel (Camelus dromedarius). Meat Science, 62 (2002), 245-251
  10. Librado, P. & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
  11. Meadows, J. R. S., Hiendleder, S. & Kijas, J. W. (2011). Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel. Heredity (Edinb), 106(4), 700-706.
  12. Nesheva, D. V. (2014). Aspects of ancient mitochondrial DNA analysis in different populations for understanding human evolution. Balkan journal of medical genetics, 17(1), 5-14.
  13. Ovenden, J. R. & Brasher, D. J. (1994). Stock identity of the red (Jasus edwardsii) and green (Jasus verreauxi) rock lobsters from mitochondrial DNA analysis. In: B.F. Phillips, J.S. Cobb. & J. Kittaka (eds), Spiny Lobster Management. (pp. 230-249). Blackwell Scientific.
  14. Romanovsk, Y. M. & Tikhonov, A. N. (2010). Molecular energy transducers of the living cell. Proton ATP synthase: A rotating molecular motor. Physics-Uspekhi, 53, 893-914.
  15. Saraste, M. (1999). Oxidative Phosphorylation at the fin de siècle. Science, 283, 1488-1493.
  16. Wang, W. X., Visavadiya, N. P., Pandya, J. D., Nelson, P. T., Sullivan, P. G. & Springer, J. E. (2015). Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury. Experimental Neurology, 265, 84-93.