Effects of Metafix with or without Monensin on performance and blood metabolites in Farahani lambs

Document Type : Research Paper


1 Former M. Sc. Student, Department of Animal Science, Agriculture Faculty, Lorestan University, Iran

2 Associate Professor, Department of Animal Science, Agriculture Faculty, Lorestan University, Iran


In this research, effects of adding Methafix (containing malate and fumarate as organic acids) with or without Monensin in diet of fattening Farahani lamb's on performance, and plasma concentration of some metabolites and minerals were investigated. Twenty-four male lambs (4-6 months old, 35.9 ±7.4 kg) were randomly  assigned to; 1) control diet (control), 2) control with 24 mg of Monensin/kg of DM (Monensin), 3) control with 4 g of Methafix/kg DM (Metafix) and 4) control with 24 mg of Monensin + 4 g of Methafix/kg DM (Monensin+Metafix). Lambs’ performance and blood glucose, urea, total protein, calcium, phosphorous, sodium and potassium metabolites were determined in two biweekly periods at the beginning (first) and end (second) of fattening period. Except for feed efficiency, parameters of performance were not affected by treatments (P>0.05). Blood urea, total protein, sodium and potassium were not affected by treatments (P>0.05). Metafix increased blood concentration of calcium in comparison to control and Monensin (P<0.05). At the first period of finishing average daily gain was significantly higher than that in the second period (286 vs. 154 g. d-1, P<0.05).  Lambs had showed lower blood glucose but higher blood urea and total protein at the end of fattening period compare to the first period. In conclusion, Monensin supplementation of diet improved feed efficiency of lambs, but no synergistic effects were found between Monensin and Methafix in relation to performance and blood metabolites during fattening period in Farahani lambs.


  1. Beckett, S., Lean, I., Dyson, R., Tranter, W. & Wade, L. (1998). Effects of monensin on the reproduction, health, and milk production of dairy cows. Journal of Dairy Science, 81, 1563-1573.
  2. Broderick, G. A. (2004). Effect of low level monensin supplementation on the production of dairy cows fed alfalfa silage. Journal of Dairy Science, 87, 359-368.
  3. Callaway, T. R. & Martin, S. A. (1997). Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria. Journal of Dairy Science, 80, 1126-1135.
  4. Carrasco, C., Medel, P., Fuentetaja, A. & Carro, M. D. (2012). Effect of malate form (acid or disodium/calcium salt) supplementation on performance, ruminal parameters and blood metabolites of feedlot cattle. Animal Feed Science and Technology, 176, 140-149.
  5. Carro, M. D., Ranilla, M. J., Giráldez, F. J. & Mantecón, A. R. (2006). Effects of malate on diet digestibility, microbial protein synthesis, plasma metabolites, and performance of growing lambs fed a high-concentrate diet. Journal of Animal Science, 84, 405-410.
  6. Castillo, C., Benedito, J. L., Mendez, J., Pereira, V., Lopez-Alonso, M., Miranda, M. & Hernandez, J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115, 101-116.
  7. Duffield, T. F., Sandals, D., Leslie, K. E., Lissemore, K., McBride, B. W., Lumsden, J. H. & Bagg, R. (1998). Effect of prepartum administration of monensin in a controlled-release capsule on postpartum energy indicators in lactating dairy cows. Journal of Dairy Science, 81, 2354-2361.
  8. Hernandez. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115, 101-116.
  9. Keyvanloo Shahrestanaki, M., Ghoorchi, T., Hassani, S. & Jafari Ahangari, Y. (2008). The effect of different levels of monensin on finishing performance and blood metabolites in Moghani lambs. Journal of Agricultural Sciences and Natural Resources, 15(3), 109-118. (in Farsi)
  10. Kirchgessner, M. & Roth, F. X. (1982) Fumaric acid as a feed additive in pig nutrition. Pig News and Information, 3, 259-264.
  11. Kirk, D. J., Fontenot, J. P. & Rahnema, S. (1994). Effects of feeding lasalocid and monensin on digestive tract flow and partial absorption of minerals in sheep. Journal of Animal Science, 72, 1029-1037.
  12. Maghsodinejad, M., Rezaie, M., Sajadi, B. & Jafari-Khorsidi, K. (1997). Effects of age and gender on performance and carcass characteristic of Zel fattening lambs. Pajohesh & Sazandegi, 37, 97-99. (in Farsi)
  13. Malaki, M., Noroozian, M. A. & Khadem, A. (2014). Effect of different sources of zinc on the concentration of minerals and Parameters. Livestock Science. 144, 285-289. (in Farsi)
  14. Malekkhahi, M., Tahmasbi, A. M., Naserian, A. A., Danesh Mesgaran, M., Kleen, J. L. & Parand, A. A. (2015). Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high‐concentrate diets. Journal of Animal Physiology and Animal Nutrition, 99(2), 221-229.
  15. McGuffey, R. K., Richardson, L. F. & Wilkinson, J. I. D. (2001). Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science, 84, 194-203.
  16. Mojabi, A., Abassali Pourkabir, M., Safi, S., Bokaie, S. & Shariati, T. (2000). Measurements of reference values of some biochemical parameters in serum samples of Ghezel breed sheep. Journal Veterinary Medicine Tehran University, 55, 19-21. (in Farsi)
  17. Murray, R. K., Granner, D. K., Mayes, P. A. & Rodwell, V. W. (2003). Harper’s Illustrated Biochemistry (26th ed). McGraw-Hill Companies.
  18. Nagaraja, T. G. & Titgemeyer, E. C. (2007). Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. Journal of Dairy Science, 90, Suppl 1, E17-E38.
  19. Nisbet, D. J. & Martin, S. A. (1993). Effects of fumarate, L-malate, and Aspergillus oryzae fermentation extract on D-lactate Utilization by the ruminal bacterium Selenomonas ruminantium. Current Microbiology, 26, 133-136.
  20. Norollahi, H. (2007). Effects of fattening period on growth and carcass characteristics of male Turkey-Ghashghaii lambs. Pajohesh & Sazandegi, 75, 132-137. (in Farsi)
  21. NRC. (2007). Nutrient Requirements of Small Ruminants; Sheep, Goat, Cervids, and New World Camelids. Washington. D. C. National Academy Press.
  22. Papatsiros, V. G., Cristodoulopoulos, C. & Filippopoulos, L. C. (2012). The use of organic acids in monogastric animals (swine and rabbits). Journal of Cell and Animal Biology, 6, 154-159.
  23. Plaizier, J. C., Krause, D. O., Gozho, B. W. & McBride, B. W. (2008). Subacute ruminal acidosis in dairy cows: The physiological, causes, incidence and consequences. The Veterinary Journal, 176, 21-31.
  24. Safaei, K., Tahmasbi, A. M., Moghaddam, G., Moghaddam, M. & Rafat, S. A. (2004). Effect of monensin supplementation on high concentrate: forage ratio on Ghezel lamb performance. In: Proceeding of the British Society of Animal Science, pp, 115.
  25. SAS Institute. (2003). SAS/STAT® Guide for personal computers. Version 9.1 Edition. SAS   Institute, Inc., Cary, NC.
  26. Xu, Y. & Ding, Z. (2011). Physiological, biochemical and histopathological effects of fermentative acidosis in ruminant production: a minimal review. Spanish Journal of Agricultural Research, 9, 414-422.