Association of the BoLA-DRB3 alleles with peripheral blood mononuclear cell proliferation in response to Staphylococcusaureus

Document Type : Research Paper

Authors

1 Former Ph.D. Student, Department of Animal Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran and Associate Professor, Department of Animal Science, University of Shiraz, Iran

2 Professor, Department of Animal Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

3 Associate Professor, Department of Animal Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

The aim of this study was to investigate the association of bovine leukocyte antigen-DRB3 alleles with peripheral blood mononuclear cell (PBMC) proliferation in response to Staphylococcus aureus. The animals included in this study (n=347) were approximately of same age and comprised of F2 Holstein-Friesian ´ Charolais (n = 155), Holstein-Friesian backcross (F0 Holstein-Friesian dams crossed with unrelated F1 sires, n = 60), Charolais backcross (F1 dams crossed with F0 Charolais sire, n=46) and pure Holstein-Friesian (n = 86).  A sequence-based typing method was used in order to determine the genotype of the animals at BoLA-DRB3 locus and a linear mixed model was used to evaluate the association of bovine leukocyte antigen-DRB3 alleles with peripheral blood mononuclear cell (PBMC) proliferation. Beside the BoLA-DRB3 alleles, fixed effects of genetic group and gender and random effect of sires were included into the statistical model. In this research, 27 alleles were found for BoLA-DRB3 gene. The results showed that alleles BoLA-DRB3*0101 and BoLA-DRB3*0902 significantly affected on the stimulation index of S. aureus–induced peripheral blood mononuclear cell proliferation (P<0.05). The results may be useful for investigating the biological mechanism of immune response against S. aureus.

Keywords


  1. Bascom, S. S. & Young, A. J. (1998). A summary of the reasons why farmers cull cows. Journal of Dairy Science, 81, 2299-2305.
  2. Baxter, R., Craigmile, S. C., Haley, C., Douglasc, A.J., Williams, J. L. & Glass, E. J. (2010). BoLA-DR peptide binding pockets are fundamental for foot-and-mouth disease virus vaccine design in cattle. Vaccine, 28, 28-37.
  3. Davies, C. J., Joosten, I., Andersson, L., Arriens, M. A., Bernoco, D., Bissumbhar, B., Byrns, G., Van Eijk, M. J., Kristensen, B., Lewin, H. A., Mikko, S., Morgan, A. L. G., Muggli-Cockett, N. E., Nilsson, P. R., Oliver, R. A., Park, C. A., van der Poel, J. J., Polli, M., Spooner, R. L. & Stewart, J. A. (1994). Polymorphism of bovine MHC class II genes - Joint report of the FifthInternational Bovine Lymphocyte Antigen (BoLA) Workshop.Interlaken, Switzerland, 1 August 1992. European Journal of Immunogenetics, 21, 259-289.
  4. Day, M. J. & Schultz, R. D. (2011). Veterinary immunology principles and practice. London, UK: Manson Publishing.
  5. Detilleux, J. C. (2002). Genetic factors affecting susceptibility of dairy cows to udder pathogens. Veterinary Immunology and Immunopathology, 88, 103-110.
  6. Dietz, A. B., Cohen, N. D., Timms, L. & Kehrli, J. M. E (1997).Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. Journal of Dairy Science. 80, 406-412.
  7. Fitzpatrick, J. L., Logan, K. E., Young, F. J., Stera, M. J., Platt, D. J. & McGuirk, B. J. (1999). Breeding cattle for mastitis resistance. pp 46-53 in proceedings of the British Mastitis Conference, Stoneleigh, UK. Institute for Animal Health, Compton, UK.
  8. Fox, L. K. & Gay, J. M. (1993). Contagious mastitis .Veterinary Clinics of North America: Food Animal Practice, 9, 475-487.
  9. Glass, E. J. (2004). Variation and responses to vaccines.Animal Health Research Reviews, 52, 197-208.
  10. Heringstad, B., Klemetsdal, G. & Ruane, J. (2000). Selection for mastitis resistance in dairy cattle: a review with focus on the situation in the Nordic countries. Livestock Production Science. 1, 95-106.
  11. Kelm, S. C., Detilleux, J. C., Freeman, A. E., Kehrli, J. M. E.,  Dietz, A. B., Fox, L. K.,  Butler, J. E., Kasckovics, I. & Kelley, D. H. (1997). Genetic association between parameters of innate immunity and measures of mastitis in perparturient Holstein cattle. Journal of Dairy Science. 80, 1767-1775.
  12. Kulberg, S., Heringstad, B., Guttersrud, O. A. & Olsaker, I. (2007). Study on the association of BoLA-DRB3.2 alleles with clinical mastitis in Norwegian Red cow. Journal of Animal Breeding and Genetics, 124, 201-207.
  13. Lammers, A., van Vorstenbosch, C. J., Erkens, J. H. & Smith, H. E. (2001).The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells. Veterinary Microbiology, 80, 255-265.
  14. Lewin, H. A., Russell, G. C. & Glass, E. J. (1999).Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunology Review, 167,145-158.
  15. Lund, M. S., Sahana, G., Andersson-Eklund, L., Hastings, N., Fernandez, A., Schulman, N., Thomsen, B., Viitala, S., Williams, J. L., Sabry, A., Viinalass, H. & Vilkki, J. (2007). Joint analysis of quantitative trait loci for clinical mastitis and somatic cell score on five chromosomes in three Nordic dairy cattle breeds. Journal of Dairy Science, 90, 5282-5290.
  16. Rogers, G. W., Hargrove, G. L. & Cooper, J. B. (1995). Correlations among somatic cell score of milk within and across lactation and linear type traits of Jerseys. Journal of Dairy Science, 78, 914-920.
  17. Rothschild, M. F., Skow, L. & Lamont, S. J. (2000). The major histocomatibility complex and its role in disease resistance and immune responsiveness. In: Axford, R. F. E., Bishop, S. C., Nicholas, F. W. & Owen, J. B. (Eds.). Breeding for disease resistance in farm animals. CAB Publishing, Oxon.
  18. Rupp, R. & Boichard, D. (2003).Genetics of resistance to mastitis in dairy cattle. Veterinary Research, 34, 671-688.
  19. Rupp, R., Hernandez, A. & Mallard, B. A. (2007). Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. Journal of Dairy Science, 90, 1029-1038.
  20. Schook, L. B. & Lamont, S. J. (2000). The major histocompatibility complex region of domestic animal species. CRC Press, chapter 4, pp. 65-98.
  21. Sharif, S., Mallard, B. A., Wilkie, B. N., Sargeant, J. M., Scott, H. M.,  Dekkers, J. C. & Leslie, K. E. (1998). Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Animal Genetics, 29, 185-193.
  22. Shook, G. E. & Schutz, M. M. (1994). Selection on somatic cell scores to improve resistance to mastitis in the United States. Journal of Dairy Science, 77, 648-658.
  23. Sordillo, L. M., Shafer-Weaver, K. & DeRosa, D. (1997). Immunobiology of the mammary gland. Journal of Dairy Science, 80, 1851-1865.
  24. Starkenburg, R. J., Hansen, L. B., Kehrli, J. M. E. & Chester- Jones, H. (1997). Frequencies and effects of alternative DRB3.2 alleles of bovine lymphocyte antigen for Holsteins milk selection and control lines. Journal of Dairy Science, 80, 3411-3419.
  25. Weller, J. L., Saran, A. & Zeliger, Y. (1992). Genetic and environmental relationships among somatic cell count, bacterial infection, and clinical mastitis. Journal of Dairy Science, 75, 2532-2540.
  26. Young, F.J., Woolliams, J.A., Williams, J.L., Glass, E.J., O’Neill, R.G. & Fitzpatrick, J.L. (2005). In vitro peripheral blood mononuclear cell proliferation in a crossbred cattle population. Journal of Dairy Science, 88, 2643-2651.