Effects of monensin supplementation alone or in combination with Methafix on milk production and composition, ruminal parameters and serum metabolites of lactating dairy cows

Document Type : Research Paper

Authors

1 Associate Professor, Department of Animal Sciences, Lorestan University, Iran

2 M. Sc. Student, Department of Animal Sciences, Lorestan University, Iran

3 Professor, Department of Animal Sciences, Lorestan University, Iran

4 Assistant Professor, Department of Animal Sciences, Lorestan University, Iran

Abstract

This study was conducted to evaluate the effects of inclusion of monensin alone or in combination with Methafix (a commercial product containing malate and fumarate) in the diets of lactating dairy cows on ruminal parameters and serum metabolites. Four multiparous Holstein lactating dairy cows (657± 12 kg of live weight; 133 ± 41days in milk) were assigned to one of the four dietary treatments. The first treatment was the control diet(C), second was control diet supplemented with 24 mg of monensin/kg of DM (M), the third was control diet supplemented with 5 g of Methafix/kg DM (ME) and the fourth treatment was C diet supplemented with 24 mg of monensin in combination with 5 g of Methafix/kg DM (MM). Dietary supplementation with Monensin alone or in combination with Metafix significantly decreased dry matter intake (P<0.05), while the intake of crude protein (CP), neutral detergent fiber (NDF) and non-fiber carbohydrates (NFC) were not affected. Utilization efficiency of dry matter for milk production was higher in monensin and Methafix-supplemented cows than in control cows (P<0.05). Dietary supplementation with monensin decreased rumen concentrations of acetate and the ratio of acetate to propionate (A:P; P<0.05). Serum concentration of triglycerides (TGs) was higher in M-fed cows compared to the C and ME-fed cows (P<0.05). Serum concentration of total proteins (TP) was higher in ME-fed cows than in the C-fed cows (P<0.05). Feeding dairy cows with a combination of monensin and Methafix increased serum concentration of TGs and TP compared to the control animals (P<0.05).

Keywords


  1. Abdi, E., Fatahnia, F., Dehghan Banadaki, M., Azarfar, A. & Khatibjo, A. (2013). Effect of soybeans roasting and monensin on milk production and composition and milk fatty acids profile of lactating dairy cows. Livestock Science, 153, 73-80.
  2. Ali, A., Sarzamin, K., Muhammad, M., Muhammad, I., Iftikhar, A., Khan, A. N., Mubarak, A. & Hamayun, K. (2013). Effect of different levels of organic acids supplementation on feed intake, milk yield and milk composition of dairy cows during thermal stress. Journal of Agricultural Sciences, 3, 762-768.
  3. Asanuma, N., Iwamoto, M. & Hino, T. (1999). Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. Journal of Dairy Science, 82, 780-787.
  4. Association of Official Analytical Chemists. (2000) Official Methods of Analysis. (17th ed.).  AOAC International, Arlington, VA.
  5. Bayaru, E., Kanda,S., T. Kamada, H. Itabashi, S. Andoh, T. Nishida, M. Ishida, T. Itoh, K. Nagara, & Isobe, Y. 2001. Effect of fumaric acid on methane production, rumen fermentation, and digestibility of cattle fed roughage alone. Animal Science Journal, 72, 139-146.
  6. Bergen, W.G. & Bates, D.B. (1984). Ionophores: their effects on production efficiency mode of action. Journal of Animal Science, 58, 1465-1483.
  7. Bryant, M. P. (1973). Nutritional requirements of the predominant rumen cellulolytic bacteria. Federation Proceedings, 32, 1809-1813.
  8. Callaway, T.R. & Martin, S.A. (1996). Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. Journal of Animal Science, 74, 1982-1989.
  9. Canadian Food Inspection Agency. (2011). Compendium of medicating ingredient brochures. Retrieved January 24, 2013, from:http://www.inspection.gc. ca/animals/feeds/medicating-ingredients/mib/mib-57/eng/ 1331053867503/1331053926592S.
  10. Carro, M. D. & Ranilla, M. J. (2003). Effect of the addition of malate on in vitro rumen fermentation of cereal grains. British Journal of Nutrition, 89, 181-188.
  11. Carro, M. D., Lopez, S., Valdes, C. & Overjero, F. J. (1999). Effect of dl-malate on mixed ruminal microorganism fermentation using the rumen simulation technique (RUSITEC). Animal Feed Science and Technology, 79, 279-288.
  12. Castillo, C., Beneditio, J. L., Me´ndez, J., Pereira, V., Lo´ pez-Alonso M., Miranda, M. & Herna´dez. J. (2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115, 101-116.
  13. Duffield, T.F. & Bagg, R.N. (2000). Use of ionophores in lactating dairy cattle: A review. Canadian Veterinary Journal, 41, 388-394.
  14. Duffield, T. F., Rabiee, A. R. & Lean, I. J. (2008). A Meta-Analysis of the impact of monensin in lactating dairy cattle. Part 1. Metabolic effects. Journal of Dairy Science, 91: 1334-1346.
  15. Duffield, T. (2001). Impact of Romensin on the health of the transition dairy cow. In: Advances in Dairy Technology. In: Proceedings of Western Canadian Dairy Seminars, 13, 41-50.
  16. Duffield, T. F.,Sandals, D., Leslie, K. E., Lissemore, K., McBride, B. W., Lumsden, J. H., Dick, P. & Bagg, R. (1998). Effect of prepartum administration of monensin in a controlled-release capsule on postpartum energy indicators in lactating dairy cows. Journal of Dairy Science, 81, 2354-2361.
  17. Dye, B.E., Amos, H.E. & Froetschel, M.A. (1988). Influence of lasalocid on rumen metabolites, milk production, milk composition and digestibility in lactating cows. Nutrition Reports International, 38, 101-115.
  18. Edmonson, A.J., Lean, I.J., Weaver, L.D., Farver, T. & Webster. G. (1989). A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science, 72, 68-78.
  19. Fatahnia, F., Rowghani, E., Hosseini, A.R., Darmani Kohi, H. & zamiri, M.J. (2010). Effect of different level of monensin in diets containing whole cottonsed on milk production and composition of lactating dairy cows. Iranian Journal of Veterinary Research, 11, 206-213.
  20. Foley, P.A., Kenny, D.A., Lovett, D.K., Callan, J.J., Boland, T.M. & O'Mara, F.P. (2009). Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters. Journal of Dairy Science, 92, 3258-3264.
  21. Grainger, C., Auldist, M. J., Clarke, T., Beauchemin, K. A., McGinn, S. M. & Hannah, M. C. (2008). Use of Monensin Controlled-Release Capsules to Reduce Methane Emissions and Improve Milk Production of Dairy Cows Offered Pasture Supplemented with Grain. Journal of Dairy Science, 91, 1159-1165.
  22. Gehman, A.M., Kononoff, P.J., Mullins, C.R. & Janicek, B.N. (2008). Evaluation of nitrogen utilization and the effects of monensin in dairy cows fed brown midrib corn silage. Journal of Dairy Science, 91, 288-300.
  23. Ghorbani, B., Ghoorch, T., Amanlou, H. & Zerehdaran, S. (2011). Effects of using monensin and different levels of crude protein on milk production, blood metabolites and digestion of dairy cows. Asian-Australasian Journal of Animal Science, 24, 65-72.
  24. Gomez, J.A., Tejido, M.L. & Carro, M.D. (2005). Influence of disodium malate on microbial growth and fermentation in Rusitec fermenters receiving medium- and high-concentrate diets. British Journal of Nutrition, 93, 479-484.
  25. Grainger, C., Auldist, M. J., Clarke, T., Beauchemin, K.A., McGinn, S.M. & Hannah, M.C. (2008). Use of Monensin Controlled-Release Capsules to Reduce Methane Emissions and Improve Milk Production of Dairy Cows Offered Pasture Supplemented with Grain. Journal of Dairy Science, 91, 1159-1165.
  26. Green, B.L., McBride, B.W., Sandals, D., Leslie, K.E., Bagg, R. & Dick, P. (1999). The impact of a monensin controlled-release capsule on subclinical ketosis in the transition dairy cow. Journal of Dairy Science, 82, 333-342.
  27. Haimoud, D.A., Vernay, M., Bayourthe, C. & Monocoulon, R. (1995). Avoparcin and monensin effects on the digestion of nutrients in dairy cows fed a mixed diet. Canadian Journal of Animal Science, 75, 379-385.
  28. Hayes, D.P., Pfeiffer, D.U. & Williamson, N.B. (1996). Effect of intraruminal monensin capsule on reproductive performance and milk production of dairy cows fed pasture. Journal of Dairy Science,79, 1000-1006.
  29. Herandez, F., Madrir, J.  & Garcia, V. (2004). Influence of two plant extracts on broiler performance, digestibility and digestive organ size. Poultry Science, 83, 169-174.
  30. Ipharraguerre, I. & Jimmy Clark, H. (2003).  Usefulness of ionophores for lactating dairy cows: A review. Animal Feed Science and Technology, 106, 39-57.
  31. Johnson, K. A. & Johnson. D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483-2492.
  32. Kung, L. Jr., Huber, J.T., Krummrey, J.D., Allison, L. & Cook, R.M. (1982). Influence of adding malic acid to dairy cattle rations on milk production, rumen volatile acids, digestibility, and nitrogen utilization. Journal of Dairy Science, 65, 1170-1174.
  33. Lana, P. R., Fox, D. G. Russell, J. B. & Perry, T. C. (1997). Influence of monensin on Holstein steers fed high-concentrate diets containing soybean meal or urea. Journal of Animal Science, 75, 2571-2579.
  34. Linehan, B., Scheifinger, C.C. & Wolin, M.J. (1978). Nutritional requirements of Selenomonas ruminantium for growth on lactate, glycerol, or glucose. Applied Environmental Microbiology, 35, 317-322.
  35. Martin, S.A., Streeter, M.N., Nisbet, D.J., Hill, G. M. & Williams, S.E. (1999). Effects of DL-malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. Journal of Animal Science, 77, 1008-1015.
  36. Martinez, C.M., Chung, Y.H., Ishler, V.A., Bailey, K.M. & Varga, G.A. (2009). Effects of dietary forage level and monensin on lactation performance, digestibility and fecal excretion of nutrients, and efficiency of feed nitrogen utilization of Holstein dairy cows. Journal of Dairy Science, 92, 3211-3221.
  37. McGinn, S. M, Beauchemin, K A, Coates, T. & Colombatto, D. (2004). Methan emission from beef cattle: effect of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science, 82, 3346-3356.
  38. McGuffey, R.K., Richardson, L.F. & Wilkinson, J.D. (2001). Ionophores for dairy cattle: Current status and future outlook.Journal of Dairy Science, 84, E194-E203.
  39. Melendez, M., Goff, J.P., Risco, C.A., Archbald, L.F., Littell, R. & Donovan, G.A. (2005). Incidence of subclinical ketosis in cows supplemented with a monensin controlled-release capsule in Holstein cattle.  Preventive Veterinary Medicine, 73, 33-42.
  40. Mohammed, N., Lila, Z.N., Ajisaka, N., Hara, K., Mikuni, K., Hara, K., Kanda, S. & Itabashi, H. (2004). Inhibition of ruminal microbial methane production by cyclodextrin iodopropane, malate and their combination in vitro. Journal of Animal Physiology and Animal Nutrition, 88, 188-195.
  41. Mohebbi-Fani, M., Nazifi, S., Shekarforoush, S. S. & Rahimi, M. (2006). Effect of monensin on serum lipoproteins, triglycerides, cholesterol, and total lipids of preparturient dairy cows. Veterinary Research Communications, 30, 7-17.
  42. Mullins, C.R., Mamedova, L.K., Brouk, M.J., Moore, C.E., Green, H.B., Perfield, K.L., Smith, J.F., Harner, J.P. & Bradford, B.J. (2012). Effects of monensin on metabolic parameters, feeding behavior, and productivity of transition dairy cows. Journal of Dairy Science, 95, 1323-1336.
  43. Nagaraja, T.G., (1995) Ionophores and antibiotics in ruminants. In R.J. Wallace., A. Chesson (Eds.), Biotechnology in animal feeding. A. VCH Publishers, New York. pp: 173-204.
  44. National Research Council. (2001). Nutrient Requirements of Dairy Cattle. (7th ed.). Washington, DC: National Academy Press.
  45. National Research Council. (1996). Nutrient Requirements of Beef Cattle. (7th ed.). Washington, DC: National Academy Press.
  46. Odongo, N.E., Or-Rashid, M.M., Bagg, R., Vessie, G., Dick,  P., Kebreab, E., France, J. & McBride, B.W. (2007). Long-term effect of feeding monensin on milk fatty acid composition in lactating dairy cows. Journal of Dairy Science, 90, 5126-5133.
  47. Oelker, E.R., Reveneau, C. & Firkins, J.L. (2009). Interaction of molasses and monensin in alfalfa hay or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows. Journal of Dairy Science, 92, 270-285.
  48. O’Mara, F.P., Beauchemin, K.A., Kreuzer, M. & McAllister, T.A. (2008).Reduction of greenhouse gas emissions of ruminants through nutritional strategies. In: Proceedings of British Society of Animal Science, International Conference, Livestock and Global Climate Change. pp 40-43.
  49. Phipps, R. H., Wilkinson, J. I. D., Jonker, L. J., Tarrant, M., Jones, A. K. & Hodge, A. (2000). Effect of monensin on milk production of Holstein-Friesian dairy cows. Journal of Dairy Science, 83, 2789-2794.
  50. Petersson-Wolfe, C. S., Leslie, K. E., Osborne, T., McBride, B. W., Bagg, R., Vessie, G., Dick, P. & Duffield, T. F. (2007). Effect of delivery method of monensin on dry matter intake, body condition score, and metabolic parameters in transition dairy cows. Journal of Dairy Science, 90, 1870-1879.
  51. Plaizier, J.C., Krause, D.O. Gozho, G.N. & McBride, B.W. (2009). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Veterinary Journal, 176, 21-31.
  52. Ørskov, E.R. (1975). Manipulation of rumen fermentation for maximum food utilization. World Review of Nutrition and Dietetics, 22,152-182.
  53. Russell, J. B. (1996). Mechanisms of ionophore action in ruminal bacteria. In: Scientific Update on Rumensin/Tylan/Micotil for the Professional Feedlot Consultant. Lilly Corporate Center, pp. E1-E18.
  54. Russell, J. B., & Strobel, H. J. (1989). Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 55, 1-6.
  55. 55.    Russell, K. E. & Roussel, A. J. (2007). Evaluation of the ruminant serum chemistry profile.
  56. Veterinary Clinics of North America: Food Animal Practice, 23, 403-426.
  57. Ruiz, R., Albrecht, G. L., Tedeschi, L. O., Jarvis, G., Russell, J. B. & Fox, D. G. (2001). Effect of monensin on the performance and nitrogen utilization of lactating dairy cows consuming fresh forage. Journal of Dairy Science, 84, 1717-1727.
  58. SAS. (2003). User’s Guide: Statistics. Version 9.2. Edition. SAS Inst., Inc., Cary, North Carolina.
  59. Sniffen, C.J., Ballard, C. S., Carter, M.P., Cotanch, K.W., Dann, H.M., Grant, R.J., Mandebvu, P., Suekawa, M. & Martin, S.A. (2006).Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Animal Feed Science and Technology, 127, 13-31.
  60. Sniffen, C.J., Ballard, C.S., Carter, M.P., Cotanch, K.W., Dann, H.M., Grant, R.J., Mandebvu, P., Suekawa, M. & Martin, S.A. (2006).Effects of malic acid on microbial efficiency and metabolism in continuous culture of rumen contents and on performance of mid-lactation dairy cows. Animal Feed Science and Technology, 127, 13-31.
  61. Stephenson, K.A., Lean, I.J., Hyde, M.L., Curtis, M.A., Garvin, J.K. & Lowe, L.B. (1997). Effects of monensin on the metabolism of periparturient dairy cows. Journal of Dairy Science, 80, 830-837.
  62. Surber, L.M. & Bowman, J.G. (1998). Monensin effects digestion of corn or barley high-concentrate diets. Journal of Animal Science, 76, 1945-1954.
  63. Sauer, F.D., Kramer, J.K.G. & Cantwell, W.J. (1989). Anti-ketogenic effects of monensin in early lactation. Journal of Dairy Science, 72, 436-442.
  64. Thomas, P.C. & Martin, P.A. (1988). The influence of nutrient balance on milk yield and composition. In: P.C. Garnsworthy (Ed.), Nutrition and Lactation in the Dairy Cow. Butterworths, London, UK.
  65. Van der werf, J. H. J., Jonker, L., Jonker, J. & Oldenbroek, J. K. (1998). Effect of monensin on milk production by Holsten and Jersey cows. Journal of Dairy Science, 81, 427- 438.
  66. Van Knegsel, A.T.M., Van Den Brand, H., Dijkstra, J., Van Straalen, W.M., Jorritsma, R., Tamminga, S. & Kemp, B. (2007). Effect of glucogenic vs. lipogenic diets on energy balance, blood metabolites, and reproduction in primiparous and multiparous dairy cows in early lactation. Journal of Dairy Science, 90, 3397-3409.
  67. Van Soest, P.J., Robertson, J.B. & Lewis, B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.
  68. Wiltrout, D.W. & Satter, L.D. (1972). Contribution of propionate to glucose synthesis in lactating and non-lactating cows. Journal of Dairy Science, 55, 307-317.
  69. Yu, C.W., Chen, Y.S., Cheng, Y.H., Cheng, Y.S., Yang, C.M.J.  & Chang, C.T. (2010). Effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and nutrient utilization in dairy does. Journal of Dairy Science, 93, 701-710.