In vitro study the effects of different levels of oregano (Origanum vulgare) essential oils on ruminal fermentation parameters, methane production and rumen induced acidosis

Document Type : Research Paper

Authors

1 M.Sc. Graduated, Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran

2 Assistant Professor,Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran

3 Associate Professor, Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran

4 Associate Professor, Department of Animal Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran

Abstract

Theaim of the current study was to assess effects of different levels of Origanum vulgare (0, 250, 500, 750 and 1000 mg/L) on kinetics of gas production, some ruminal digestion and fermentation parameters, methane production and also to determine its potential in controlling rumen acidosis using in vitro method in four separate phases. In the first phase, the asymptote of gas production (A) and gas production rate (b) were changed nonlinearly and lag phase (L) increased linearly with increasing doses of oregano essential oils (P<0.0). The highest A and b and the lowest L were observed at 250 mg/L of the essential oil. In the second phase, the in vitro true dry matter (IVTDMD) and organic matter (IVTOMD) degradability, and total volatile fatty acids (TVFA) concentration decreased at doses higher than 500 mg/L. However, the gas produced after 24 h of incubation (GP24) and microbial biomass (MB) were increased at doses up to 750 mg/L. The molar proportion of acetate and propionate increased and that of butyrate decreased at doses higher than 500 mg/L. Using oregano essential oil resulted also in a nonlinear decrease in concentration and percentage of produced methane, but had no effect at any of the used doses in controlling rumen acidosis.

Keywords


  1. AOAC. (2000). Official Methods of Analysis (17 ed.). VA, USA: Arlington.
  2. Baratta, M. T., Dorman, H. J. D. & Deans, S. G. (1998). Chemical Composition, Antimicrobial and Antioxidative Activity of Laurel, Sage, Rosemary, Oregano and Coriander Essential Oils. Journal of Essential Oil Research, 10, 618-627.
  3. Beauchemin, K. A. & McGinn, S. M. (2006). Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. Journal of Animal Science, 84(6), 1489-1496.
  4. Benchaar, C., Calsamiglia, S., Chaves, A. V., Fraser, G. R., Colombatto, D., McAllister, T. A. & Beauchemin, K. A. (2008). A review of plant-derived essential oils in ruminant nutrition and production. Animal Feed Science and Technology, 145(1-4), 209-228.
  5. Blummel, M., Makkar, H. P. S. & Becker, K. (1997a). In vitro gas production: a technique revisited. Journal of Animal Physiology and Animal Nutrition 77, 24-34.
  6. Blummel, M., Steingab, H. & Becker, K. (1997b). The relationship between in vitro gas production, in vitro microbial biomass yield and N-15 incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition, 77(6), 911-921.
  7. Bodas, R., Prieto, N., García-González, R., Andrés, S., Giráldez, F. J. & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176(1–4), 78-93.
  8. Broderick, G. A. & Kang, J. H. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63, 64-75.
  9. Busquet, M., Calsamiglia, S., Ferret, A. & Kamel, C. (2006). Plant extracts affect in vitro rumen microbial fermentation. Journal of Dairy Science, 89(2), 761-771.
  10. Busquet, M., Calsamiglia, S., Ferret, A. & Kamel, C. (2005). Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system. Animal Feed Science and Technology, 124(3-4), 597-613.
  11. Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L. & Ferret, A. (2007). Invited review: Essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6), 2580-2595.
  12. Cardozo, P. W., Calsamiglia, S., Ferret, A. & Kamel, C. (2005). Screening for the effects of natural plant extracts at two pH levels on in vitro rumen microbial fermentation of a high-concentrate beef cattle diet. Journal of Dairy Science, 88, 49-50.
  13. Cardozo, P. W., Calsamiglia, S., Ferret, A. & Kamel, C. (2004). Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science, 82(11), 3230-3236.
  14. Castillejos, L., Calsamiglia, S., Martin-Tereso, J. & Ter Wijlen, H. (2008). In vitro evaluation of effects of ten essential oils at three doses on ruminal fermentation of high concentrate feedlot-type diets. Animal Feed Science and Technology, 145(1-4), 259-270.
  15. Castillejos, L., Calsamiglia, S. & Ferret, A. (2006). Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Journal of Dairy Science, 89(7), 2649-2658.
  16. Castillejos, L., Calsamiglia, S., Ferret, A. & Losa, R. (2005). Effects of adaptation time of a specific blend of essential oils on rumen nitrogen metabolism and fermentation profile in sheep. Journal of Dairy Science, 88, 315-315.
  17. Chaves, A. V., Baah, J., Wang, Y., McAllister, T. A. & Benchaar, C. h. (2012). Effects ofcinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. Journal of the Science of Food and Agriculture, 92, 906-915.
  18. Dorman, H. J. D. & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316.
  19. Fievez, V., Babayemi, O. J. & Demeyer, D. (2005). Estimation of direct  and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Animal Feed Science and Technology, 124, 197-210.
  20. Firkins, J. L., Yu, Z. & Morrison, M. (2007). Ruminal nitrogen metabolism:perspectives for integration of microbiology and nutrition for dairy. Journal of Dairy Science, 90(Suppl 1), E1-16.
  21. France, J., Dhanoa, M. S., Theodorou, M. K., Lister, S. J., Davies, D. R. & Isac, D. (1993). A Model to Interpret Gas Accumulation Profiles Associated with Invitro Degradation of Ruminant Feeds. Journal of Theoretical Biology, 163(1), 99-111.
  22. Hristov, A. N., Lee, C., Cassidy, T., Heyler, K., Tekippe, J. A., Varga, G. A., Corl, B. & Brandt, R. C. (2013). Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. Journal of Dairy Science, 96, 1189-1202.
  23. Hutton, P. G., Nagaraja, T. G., White, C. L. & Vercoe, P. E. (2010). Screening Plants for the Antimicrobial Control of Lactic Acidosis in Ruminant Livestock. In P. E. Vercoe, H. P. S. Makkar & A. C. Schlink (Eds.), In Vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies (pp. 159-189). Dordrecht Heidelberg/ London/ New York: Springer.
  24. Jahani-Azizabadi, H., Mesgaran, M. D., Vakili, A. R., Rezayazdi, K. & Hashemi, M. (2011). Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. African Journal of Microbiological Research, 5, 4812-4819.
  25. Jouany, J. P. & Morgavi, D. R. (2007). Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production. Animal, 1(10), 1443-1466.
  26. Kumar, R., Kamra, D. & Agarwal, N. (2009). Effect of eucalyptus ( Eucalyptus globulus ) oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Animal Nutrition and Feed Ttechnology, 9, 237-243.
  27. Lin, B., Ji, M., Liang, Q., Lu, Y. & Liu, J. (2011). Effect of cinnamon oil and oregano oil and their major components on rumen fermentation /i in vitro. Chinese Journal of Veterinary Science, 31(2), 279-282, 287.
  28. López, S., Makkar, H. P. S. & Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In P. E. Vercoe, H. P. S. Makkar & A. C. Schlink (Eds.), In vitro Screening of Plant Resources for Extra-Nutritional Attributes in Ruminants: Nuclear and Related Methodologies (pp. 191–231). Dordrecht, The Netherlands: Springer.
  29. Makkar, H. P. S., Blümmel, M. & Becker, K. (1995). Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production ‌and true digestibility in in vitro techniques. British Journal of Nutrition, 73, 897-913.
  30. Malecky, M., Albarello, H. & Broudiscou, L. P. (2012). Degradation of terpenes and terpenoids from Mediterranean rangelands by mixed rumen bacteria in vitro. Animal, 6, 612-616.
  31. Malecky, M. & Broudiscou, L. P. (2009). Disappearance of nine monoterpenes exposed in vitro to the rumen microflora of dairy goats: Effects of inoculum source, redox potential, and vancomycin Journal of Animal Science, 87, 1366-1373.
  32. Malecky, M., Broudiscou, L. P. & Schmidely, P. (2009). Effects of two levels of monoterpene blend on rumen fermentation, terpene and nutrient flows in the duodenum and milk production in dairy goats. Animal Feed Science and Technology, 154(1/2), 24-35.
  33. Malecky, M., Fedele, V. & Broudiscou, L. P. (2008). In vitro degradation by mixed rumen bacteria of 17 mono- and sesquiterpenes typical of winter and spring diets of goats on Basilitica rangelands (southern Italy). Journal of the Science of Food and Agriculture 89, 531-536.
  34. McAllister, T. A. & Newbold, C. J. (2008). Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48(1-2), 7-13.
  35. Menke, K. H., Raab, L., Salewski, A., Steinglass, H., Fritz, D. & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science Cambridge, 93, 217-222.
  36. Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Reaseach and Development, 28, 7-55.
  37. Meyer, N. F., Erickson, G. E., Klopfenstein, T. J., Greenquist, M. A., Luebbe, M. K., Williams, P. & Engstrom, M. A. (2009). Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. Journal of Animal Science, 87(7), 2346-2354.
  38. Nagaraja, T. G. (2002). Ruminal microorganisms and digestive disorders in cattle. In S. A. Martin (Ed.), Gastrointestinal Microbiology in Animals (pp. 41-60). Kerala, India: Research Signpost.
  39. Newbold, C. J., ElHassan, S. M., Wang, J., Ortega, M. E. & Wallace, R. J. (1997). Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. British Journal of Nutrition, 78(2), 237-249.
  40. Nolan, J. V. & Dobos, R. C. (2005). Nitrogen Transactions in Ruminants. In J. Dijkstra, J. M. Forbes & J. France (Eds.), Quantitative Aspects of Ruminant Digestion and Metabolism (2 ed., pp. 177-206). Walingford, UK: CABI Publishing.
  41. Ottenstein, D. M. & Bartley, D. A. (1971). Separation of free acids C2-C5 in diluted aqueous ‌solution column technology. Journal of Chromatographic Science, 9, 673-681.
  42. Patra, A. K. & Yu, Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78(12), 4271-4280.
  43. Patra, A. K. & Yu, Z. (2014). Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein-degrading microorganisms of the rumen. Applied Microbiology and Biotechnology, 98(2), 897-905.
  44. Patra, A. K. (2011). Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian Journal of Animal and Veterinary Advances, 6, 416- 428.
  45. Roy, D., Tomar, S. K., Sirohi, S. K., Kumar, V. & Kumar, M. (2014). Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalo rumen liquor. Veterinary World, 7(4), 213-218.
  46. SAS. (2002). Statistical Analytical System Users Guide. Cary, NC, USA: SAS Institute.
  47. Talebzadeh, R., Alipour, D., Saharkhiz, M. J. & Malecky, M. (2013). In vitro evaluation of the effects of Ajowan (Carum copticum L.) essential oils on the parameters of ruminal fermentation. Journal of Ruminant Research, 1, 17-30.
  48. Tekippe, J. A., Hristov, A. N., Heyler, K. S., Cassidy, T. W., Zheljazkov, V. D., Ferreira, J. F., Karnati, S. K. & Varga, G. A. (2011). Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows. Journal of Dairy Science, 94(10), 5065-5079.
  49. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral ‌detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597.