REFERENCES
Abuelo, A., Hernández, J., Benedito, J. L., & Castillo, C. (2019). Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidants, 8(1), 20.
Acosta-Estrada, B. A., Reyes, A., Rosell, C. M., Rodrigo, D., & Ibarra-Herrera, C. C. (2021). Benefits and challenges in the incorporation of insects in food products. Frontiers in nutrition, 8, 687712.
Ammerman, C. B., Baker, D. P., & Lewis, A. J. (Eds.). (1995). Bioavailability of nutrients for animals: Amino acids, minerals, vitamins. Elsevier.
Aslam, S., Shukat, R., Khan, M. I., & Shahid, M. (2020). Effect of dietary supplementation of bioactive peptides on antioxidant potential of broiler breast meat and physicochemical characteristics of nuggets. Food Science of Animal Resources, 40(1), 55.
Assan, R., Attali, J. R., Ballerio, G., Boillot, J., & Girard, J. R. (1977). Glucagon secretion induced by natural and artificial amino acids in the perfused rat pancreas. Diabetes, 26(4), 300-307.
Bakhshizadeh, S., Aghjehgheshlagh, F. M., Taghizadeh, A., Seifdavati, J., & Navidshad, B. (2019). Effect of zinc sources on milk yield, milk composition and plasma concentration of metabolites in dairy cows. South African Journal of Animal Science, 49(5), 884-891.
Bao, Y. M., Choct, M., Iji, P. A., & Bruerton, K. (2007). Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. Journal of Applied Poultry Research, 16(3), 448-455.
Cai, J., Wang, D., & Liu, J. (2018). Regulation of fluid flow through the mammary gland of dairy cows and its effect on milk production: a systematic review. Journal of the Science of Food and Agriculture, 98(4), 1261-1270.
Cao, J., Henry, P. R., Guo, R., Holwerda, R. A., Toth, J. P., Littell, R. C., ... & Ammerman, C. B. (2000). Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 78(8), 2039-2054.
Ceciliani, F., Ceron, J. J., Eckersall, P. D., & Sauerwein, H. (2012). Acute phase proteins in ruminants. Journal of proteomics, 75(14), 4207-4231.
Chapinal, N., Carson, M. E., LeBlanc, S. J., Leslie, K. E., Godden, S., Capel, M., ... & Duffield, T. F. (2012). The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. Journal of Dairy Science, 95(3), 1301-1309.
Chen, F., Li, Y., Shen, Y., Guo, Y., Zhao, X., Li, Q., ... & Li, J. (2020). Effects of prepartum zinc-methionine supplementation on feed digestibility, rumen fermentation patterns, immunity status, and passive transfer of immunity in dairy cows. Journal of Dairy Science, 103(10), 8976-8985.
Cheng, H., Liu, W., Yuan, X., Jia, E., Zhang, D., & Jiang, G. (2020). Effects of dietary cottonseed meal protein hydrolysate on growth, antioxidants and immunity of Chinese mitten crab Eriocheir sinensis. Journal of Oceanology and Limnology, 38, 869-882.
Chew, B. P., Eisenman, J. R., & Tanaka, T. S. (1984). Arginine infusion stimulates prolactin, growth hormone, insulin, and subsequent lactation in pregnant dairy cows. Journal of Dairy Science, 67(11), 2507-2518.
Connelly, M. K., Weaver, S. R., Kuehnl, J. M., Fricke, H. P., Klister, M., & Hernandez, L. (2021). Elevated serotonin coordinates mammary metabolism in dairy cows. Physiological Reports, 9(7), e14798.
Cornelius, D. C. (2018). Preeclampsia: from inflammation to immunoregulation. Clinical medicine insights: Blood disorders, 11, 1179545X17752325.
Cortinhas, C. S., Freitas Júnior, J. E. D., Naves, J. D. R., Porcionato, M. A. D. F., Rennó, F. P., & Santos, M. V. D. (2012). Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition. Revista Brasileira de Zootecnia, 41, 1477-1483.
de Oliveira Filho, J. G., Rodrigues, J. M., Valadares, A. C. F., de Almeida, A. B., Valencia-Mejia, E., Fernandes, K. F., ... & Dyszy, F. H. (2021). Bioactive properties of protein hydrolysate of cottonseed byproduct: antioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activities. Waste and Biomass Valorization, 12, 1395-1404.
DeGaris, P. J., & Lean, I. J. (2008). Milk fever in dairy cows: A review of pathophysiology and control principles. The veterinary journal, 176(1), 58-69.
Dempsey, C., McCormick, N. H., Croxford, T. P., Seo, Y. A., Grider, A., & Kelleher, S. L. (2012). Marginal maternal zinc deficiency in lactating mice reduces secretory capacity and alters milk composition. The Journal of Nutrition, 142(4), 655-660.
e Silva, F. G. D., Hernández-Ledesma, B., Amigo, L., Netto, F. M., & Miralles, B. (2017). Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT-Food Science and Technology, 76, 140-146.
Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T., & Webster, G. (1989). A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science, 72(1), 68-78..
Faulkner, M. J., & Weiss, W. P. (2017). Effect of source of trace minerals in either forage-or by-product–based diets fed to dairy cows: 1. Production and macronutrient digestibility. Journal of Dairy Science, 100(7), 5358-5367.
Flees, J. J., Ganguly, B., & Dridi, S. (2021). Phytogenic feed additives improve broiler feed efficiency via modulation of intermediary lipid and protein metabolism–related signaling pathways. Poultry Science, 100(3), 100963.
Forman, H. J. (2016). Redox signaling: An evolution from free radicals to aging. Free Radical Biology and Medicine, 97, 398-407.
Formigoni, A., Parisini, P., & Corradi, F. (1993). The use of amino acid chelates in high production milk cows. The Roles of Amino Acid Chelates in Animal Nutrition. Ashmead HD, ed. Noyes Publ., Park Ridge, NJ, 170-186.
Goff, J. P. (2008). The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. The Veterinary Journal, 176(1), 50-57.
Goff, J. P., Liesegang, A., & Horst, R. L. (2014). Diet-induced pseudohypoparathyroidism: A hypocalcemia and milk fever risk factor. Journal of Dairy Science, 97(3), 1520-1528.
Goldman, C. R. (2010). Micronutrient elements (Co, Mo, Mn, Zn, Cu). Biogeochemistry of inland waters, 378-382.
Gorlov, I. F., Levakhin, V. I., Radchikov, V. F., Tsai, V. P., & Bozhkova, S. E. (2015). Effect of feeding with organic microelement complex on blood composition and beef production of young cattle. Modern Applied Science, 9(10), 8.
Greenfield, R. B., Cecava, M. J., Johnson, T. R., & Donkin, S. S. (2000). Impact of dietary protein amount and rumen undegradability on intake, peripartum liver triglyceride, plasma metabolites, and milk production in transition dairy cattle. Journal of dairy science, 83(4), 703-710.
Griffiths, L. M., Loeffler, S. H., Socha, M. T., Tomlinson, D. J., & Johnson, A. B. (2007). Effects of supplementing complexed zinc, manganese, copper and cobalt on lactation and reproductive performance of intensively grazed lactating dairy cattle on the South Island of New Zealand. Animal Feed Science and Technology, 137(1-2), 69-83.
Hall, J. A., Bobe, G., Vorachek, W. R., Estill, C. T., Mosher, W. D., Pirelli, G. J., & Gamroth, M. (2014). Effect of supranutritional maternal and colostral selenium supplementation on passive absorption of immunoglobulin G in selenium-replete dairy calves. Journal of Dairy Science, 97(7), 4379-4391.
Hosseini, Z. F. Amanlou, H.,, Amirabadi Farahani, T. and Eslamian Farsouni, N. (2016). Effects of crude protein levels in the shortened close-up period on health and milk production of Holstein cows. Iranian Journal of Animal Science, 47(1), 123-133. (In Persian)
Immler, M., K. Buttner, T., Gartner, A., Wehrend, & Donat, K. (2021). Maternal Impact on Serum Immunoglobulin and Total Protein Concentration in Dairy Calves. Animals 12(6),755.
Karimzadeh, S., Rezaei, M., & Yansari, A. T. (2017). Effects of different levels of canola meal peptides on growth performance and blood metabolites in broiler chickens. Livestock Science, 203, 37-40.
Kellogg, D. W., Tomlinson, D. J., Socha, M. T., & Johnson, A. B. (2004). Effects of zinc methionine complex on milk production and somatic cell count of dairy cows: Twelve-trial summary. The Professional Animal Scientist, 20(4), 295-301.
Khiari, Z., Ndagijimana, M., & Betti, M. (2014). Low molecular weight bioactive peptides derived from the enzymatic hydrolysis of collagen after isoelectric solubilization/precipitation process of turkey by-products. Poultry Science, 93(9), 2347-2362.
Kim, S.K., Wijesekara, I., Park, E.Y., Matsumura, Y., Nakamura, Y & Kenji, S. (2011). Bioactive proteins and peptides, in: N.S. Hettiarachchy, S. Sato, M.R. Marshall, A. Kannan (Eds.), Bioact. Food Proteins Pept. Appl. Hum. Heal. CRC Press, Boca Raton, FL, pp. 97e116.
Kimura, K. A. Y. O. K. O., Reinhardt, T. A., & Goff, J. P. (2006). Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. Journal of Dairy Science, 89(7), 2588-2595.
Kong, X., Song, W., Hua, Y., Li, X., Chen, Y., Zhang, C., & Chen, Y. (2020). Insights into the antibacterial activity of cottonseed protein-derived peptide against Escherichia coli. Food & Function, 11(11), 10047-10057.
Lee, S., & Kelleher, S. L. (2016). Molecular regulation of lactation: The complex and requisite roles for zinc. Archives of Biochemistry and Biophysics, 611, 86-92.
Li-Chan, E. C. (2015). Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science, 1, 28-37.
Liefers, S. C., Veerkamp, R. F., Te Pas, M. F. W., Delavaud, C., Chilliard, Y., & Van der Lende, T. (2003). Leptin concentrations in relation to energy balance, milk yield, intake, live weight, and estrus in dairy cows. Journal of Dairy Science, 86(3), 799-807.
Liu, J., Luo, Y., Zhang, X., Gao, Y., & Zhang, W. (2022). Effects of bioactive peptides derived from cottonseed meal solid‐state fermentation on the growth, metabolism, and immunity of yellow‐feathered broilers. Animal Science Journal, 93(1), e13781.
Liu, Z., Ren, Z., Zhang, J., Chuang, C. C., Kandaswamy, E., Zhou, T., & Zuo, L. (2018). Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology, 9, 360203.
Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary & Animal Sciences, 39(1), 75-80.
Megahed, A. A., Hiew, M. H., & Constable, P. D. (2015, September). The effects of sample temperature on the concentrations of glucose and β-OH butyrate measured by the Precision Xtra meter in plasma from periparturient dairy cattle. In American Association of Bovine Practitioners Conference Proceedings (pp. 214-214).
Miller, J. K., Ramsey, N. & Madsen, F. C. (1988). The trace elements In: Church D.C. The Ruminant Animal: Digestive Physiology and Nutrition. PrenticeHall, Englewood Cliffs, NJ 988: 342-400.
Mirbagheri Marvili, Z., Amanlou, H., & Eslamian Farsuni, N. (2024). The Effect of Feeding Top-Dress Cottonseed Bioactive Peptide and Organic Selenium on Milk Production, Liver Function, Metabolic, and Immunity Responses during the Prepartum of Holstein Dairy Cattle. Iranian Journal of Applied Animal Science, 14(2).
Mohanta, R. K., & Garg, A. K. (2014). Organic trace minerals: immunity, health, production and reproduction in farm animals. Indian Journal of Animal Nutrition, 31(3), 203-212.
Moure, A., Domínguez, H., & Parajó, J. C. (2006). Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 41(2), 447-456.
Mulligan, F., O'Grady, L., Rice, D., & Doherty, M. (2006). Production diseases of the transition cow: milk fever and subclinical hypocalcaemia. Irish Veterinary Journal, 59(12), 697–702.
National Academies of Sciences Engineering and Medicine. (2021). Nutrient Requirements of Dairy Cattle. 8th rev. ed. The National Academies Press, Washington, DC.
National Research Council, Committee on Animal Nutrition, & Subcommittee on Dairy Cattle Nutrition. (2001). Nutrient requirements of dairy cattle: 2001. National Academies Press.
Nayeri, A., Upah, N. C., Sucu, E. K. İ. N., Sanz-Fernandez, M. V., DeFrain, J. M., Gorden, P. J., & Baumgard, L. H. (2014). Effect of the ratio of zinc amino acid complex to zinc sulfate on the performance of Holstein cows. Journal of Dairy Science, 97(7), 4392-4404.
Norris, R., Harnedy, P. A., & FitzGerald, R. J. (2013). Antihypertensive peptides from marine sources. Bioactive compounds from marine foods: Plant and Animal Sources, 27-56.
Ospina, P. A., Nydam, D. V., Stokol, T., & Overton, T. R. (2010). Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. Journal of Dairy Science, 93(4), 1596-1603.
Pomatto, L. C., & Davies, K. J. (2018). Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 124, 420-430.
Predieri, G., Tegoni, M., Cinti, E., Leonardi, G., & Ferruzza, S. (2003). Metal chelates of 2-hydroxy-4-methylthiobutanoic acid in animal feeding: preliminary investigations on stability and bioavailability. Journal of Inorganic Biochemistry, 95(2-3), 221-224.
Price, D. M., Arellano, K. K., Irsik, M., Rae, D. O., Yelich, J. V., Mjoun, K., & Hersom, M. J. (2017). Effects of trace mineral supplement source during gestation and lactation in Angus and Brangus cows and subsequent calf immunoglobulin concentrations, growth, and development. The Professional Animal Scientist, 33(2), 194-204.
Rabiee, A. R., Lean, I. J., Stevenson, M. A., & Socha, M. T. (2010). Effects of feeding organic trace minerals on milk production and reproductive performance in lactating dairy cows: A meta-analysis. Journal of Dairy Science, 93(9), 4239-4251.
Ríus, A. G. (2019). Invited Review: Adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Applied Animal Science, 35(1), 39-48.
Samurailatpam Sanjukta, S. S., & Rai, A. K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology, 50, 1-10.
Sangsawad, P., Roytrakul, S., & Yongsawatdigul, J. (2017). Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast. Journal of Functional Foods, 29, 77-83.
Schabenberger, O., Gregoire, T. G., & Kong, F. (2000). Collections of simple effects and their relationship to main effects and interactions in factorials. The American Statistician, 54(3), 210-214.
Sobhanirad, S., Carlson, D., & Bahari Kashani, R. (2010). Effect of zinc methionine or zinc sulfate supplementation on milk production and composition of milk in lactating dairy cows. Biological Trace Element Research, 136, 48-54.
Sordillo, L. M., & Aitken, S. L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary Immunology and Immunopathology, 128(1-3), 104-109.
Sordillo, L. M., Shafer-Weaver, K., & DeRosa, D. (1997). Immunobiology of the mammary gland. Journal of Dairy Science, 80(8), 1851-1865.
Spears, J. W. (2003). Trace mineral bioavailability in ruminants. The Journal of Nutrition, 133(5), 1506S-1509S.
Spears, J. W., & Weiss, W. P. (2008). Role of antioxidants and trace elements in health and immunity of transition dairy cows. The Veterinary Journal, 176(1), 70-76.
Vallee, B. L., & Falchuk, K. H. (1993). The biochemical basis of zinc physiology. Physiological Reviews, 73(1), 79-118.
Wang, L., Ma, M., Yu, Z., & Du, S. K. (2021). Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chemistry, 352, 129399.
Ward, E., Yang, N., Muhlhausler, B. S., Leghi, G. E., Netting, M. J., Elmes, M. J., & Langley‐Evans, S. C. (2021). Acute changes to breast milk composition following consumption of high‐fat and high‐sugar meals. Maternal & Child Nutrition, 17(3), e13168.
Webb, K. J., Wong, E. A., Pan, Y. X., Chen, H., Poole, C. A., Van, L., & Klang, J. E. (2005). The role of peptides in absorption pathways. 197-225.
Weng, X., Monteiro, A. P. A., Guo, J., Li, C., Orellana, R. M., Marins, T. N., ... & Tao, S. (2018). Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. Journal of Dairy Science, 101(3), 2617-2630.
Yang, X., Sun, J. Y., Guo, J. L., & Weng, X. Y. (2012). Identification and proteomic analysis of a novel gossypol‐degrading fungal strain. Journal of the Science of Food and Agriculture, 92(4), 943-951.
Yuan, X. Y., Liu, M. Y., Cheng, H. H., Huang, Y. Y., Dai, Y. J., Liu, W. B., & Jiang, G. Z. (2019). Replacing fish meal with cottonseed meal protein hydrolysate affects amino acid metabolism via AMPK/SIRT1 and TOR signaling pathway of Megalobrama amblycephala. Aquaculture, 510, 225-233.
Yuan, X. Y., Liu, W. B., Wang, C. C., Huang, Y. Y., Dai, Y. J., Cheng, H. H., & Jiang, G. Z. (2020). Evaluation of antioxidant capacity and immunomodulatory effects of cottonseed meal protein hydrolysate and its derivative peptides for hepatocytes of blunt snout bream (Megalobrama amblycephala). Fish & Shellfish Immunology, 98, 10-18.
Yue, S., Li, X., Qian, J., Du, J., Liu, X., Xu, H., ... & Chen, X. (2023). Impact of Enzymatic Hydrolyzed Protein Feeding on Rumen Microbial Population, Blood Metabolites and Performance Parameters of Lactating Dairy Cows. Pakistan Veterinary Journal, 43(4).
Zhou, J., Ding, Z., Pu, Q., Xue, B., Yue, S., Guan, S., Xue, B. (2022). Rumen fermentation and microbiome responses to enzymatic hydrolysate of cottonseed protein supplementation in continuous in vitro culture. Animals, 12(16), 2113.
Zurek, E., Foxcroft, G. R., & Kennelly, J. J. (1995). Metabolic status and interval to first ovulation in postpartum dairy cows. Journal of Dairy Science, 78(9), 1909-1920.