Integrative and comparative analysis of transcriptional profiles and competitive endogenous RNA regulatory networks to identify key genes associated with heat stress in broiler chickens

Document Type : Research Paper

Authors

Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Alborz, Iran.

Abstract

Broilers are particularly sensitive to high ambient temperatures, which may have a negative impact on their welfare and production efficiency. The aim of the study was to combine a literature review analysis of transcriptional profiling and a competitive endogenous regulatory network analysis (CERNA) to identify the key messenger and non-coding RNAs involved in the molecular regulation of the cells of the pituitary gland and the brain in heat stress broiler chickens. Overall, two long non-coding RNA, 11 microRNAs and 426 common mRNAs and genes were identified that showed significant differences in expression between the two tissues. From the analysis, 12 major genes (HSP90A1, HSPA5, HSP90B1, HSPA4, HUSY1, AHSA2, ALB, DNAJA1, DNAJA4, HSPA4L, and HSPH1) were found to be more extensively expressed in broiler chickens under heat stress than in control chickens. In addition, after reconstructing the competitive endogenous RNA regulatory network and the associated candidate modules, the main important metabolic signalling pathways identified were protein-folding chaperones, cellular component organisation, protein-binding to heat shock proteins, the endoplasmic reticulum chaperone complex, and protein-processing signalling pathways in the endoplasmic reticulum. Overall, considering the identified RNAs involved in the ceRNA regulatory network that underlie phenotypic differences in the severity of heat stress, this study may provide new insights into the molecular mechanisms underlying the control of heat stress severity and resistance in broiler chickens.

Keywords

Main Subjects


Extended Abstract

Introduction

Broilers are an important breed of livestock and play an important role in food security. In poultry farming, the higher production rate is largely dependent on nutrient intake, climate conditions and ambient humidity. In recent years, climate conditions have changed, leading to an increase in average global temperature, which is contributing to global warming. Broiler meat is an important and essential source of food for humans and accounts for about 34.3 per cent of global meat production. However, chickens are particularly sensitive to heat stress. Despite various efforts to mitigate the adverse effects of heat stress on broiler chickens, the molecular mechanisms and regulatory functions involved in their biological response are still not fully understood. The aim of this study was to combine the analysis of the transcriptional profiling with literature review and analysis of the competitive regulatory network of endogenous RNA (ceRNA). The aim of this approach was to identify the key messenger RNA (mRNA) and non-coding RNA (RNA) involved in the molecular regulation of the cells of the pituitary gland and the brain under heat stress in broiler chickens.

 

Materials and Methods

The study analysed transcription profiles from two types of brain tissue: pituitary gland and brain stem cells. We performed a comparative transcriptome analysis of the RNA-Seq and microarray data sets to detect the differences in gene expression between two groups of broiler chickens: the heat-treated group and the control group. Following this, we explored the ontology of the relevant genes as identified by data analysis and literature review. In addition, we reconstructed a competitive endogenous RNA regulatory network highlighting four candidate modules related to heat stress in broiler chickens.

 

Results and Discussion

Results from this study identified two long non-coding (ncRNA) RNAs, 11 microRNAs and 426 common mRNAs and genes that showed significant differences in expression between the two tissues. After analysing the interactions between the differentially expressed genes and building a network of protein interactions, we identified 12 major interaction genes (mRNAs): HSP90A1, HSPA5, HSP90B1, HSPA4, HSPA2, HSPA3, HSPA4L, HSPA2, ALB, DNAJA1, DNAJA4, and DNAJA4. These genes showed increased expression in broiler chickens under heat stress compared with control chickens. In addition, we reconstructed a competitive endogenous RNA regulatory network and identified four related candidate modules by means of clustering. An annotation analysis of the identified RNA has shown their association with 8, 7 and 27 relevant pathways for heat stress, respectively, in the categories of biological processes, molecular functions and cellular constituents. Notably, the major metabolic signalling pathways identified were those related to protein-folding chaperones, cellular component organisation, cellular processes, cellular biogenesis, thermal protein binding, endoplasmic reticulum chaperone complexes, and endoplasmic reticulum protein processing signalling.

 

Conclusion

The results suggest that combining transcriptomic profiles with literature reviews and analysis of the CERN in brain tissue samples, especially the pituitary and the cerebral cortex, under heat stress conditions, may help to identify key coding and non-coding RNA. This integrated approach provides valuable insights into the genetic and regulatory mechanisms involved in broiler chicken heat stress. In addition, it can help to address the problems of heat stress and improve their performance characteristics.

Author Contributions

Conceptualization: Faezeh Hesari, Mostafa Sadeghi, Seyed Reza Miraei-Ashtiani, and Farzad Ghafouri; methodology: Faezeh Hesari; formal analysis: Faezeh Hesari and Farzad Ghafouri; writing—original draft preparation, Faezeh Hesari; writing—review and editing: Mostafa Sadeghi, Seyed Reza Miraei-Ashtiani, and Farzad Ghafouri; supervision: Mostafa Sadeghi, Seyed Reza Miraei-Ashtiani, and Farzad Ghafouri. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Datasets used in this study are publicly available and can be accessed from the National Center for Biotechnology Information (NCBI) with accession numbers GSE23592 and GSE89297. Further details on accessing the data are on the NCBI website at https://www.ncbi.nlm.nih.gov/geo/.

Acknowledgements

The authors express their thanks to the Gene Expression Omnibus (GEO) open repository database from National Center for Biotechnology Information (NCBI) for providing a platform to access molecular data.

Ethical considerations

The study did not involve human or animal subjects and therefore did not require ethical approval. The authors confirm that no data fabrication, falsification, plagiarism, or misconduct occurred.

Conflict of interest

The authors declare no conflicts of interest.

REFERENCES
Amiri Roudbar, M., Mohammadabadi, M. R., Ayatollahi  Mehrgardi, A., Abdollahi-Arpanahi, R., Momen, M., Morota, G., Brito Lopes, F., Gianola, D., & Rosa, G. J. M. (2020). Integration of single nucleotide variants and whole-genome DNA methylation profiles for classification of rheumatoid arthritis cases from controls. Heredity, 124(5), 658–674.
Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C., & Wingett, S. (2010). FastQC: A quality control tool for high throughput sequence data. Available online: http://www.bioinformatics.babraham. ac.uk/projects/fastqc
Sadollahpour Nanaei, H., Kharrati-Koopaee, H., & Esmailizadeh, A. (2022). Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC Genomics23(1), 224.
Baaklini, I., Wong, M. J., Hantouche, C., Patel, Y., Shrier, A., & Young, J. C. (2012). The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding. Journal of Biological Chemistry287(50), 41939-41954.
Barazandeh, A., Mohammadabadi, M. R., Ghaderi-Zefrehei, M., & Nezamabadi-Pour, H. (2016). Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech Journal of Animal Science, 61(11), 487–495.
Barreto Sánchez, A. L., Wang, Q., Thiam, M., Wang, Z., Zhang, J., Zhang, Q., Zhang, N., Li, Q., Wen, J. & Zhao, G. (2022). Liver transcriptome response to heat stress in Beijing You chickens and Guang Ming broilers. Genes13(3), 416.
Bernardo, M. V., Yelo, E., Gimeno, L., Campillo, J. A., & Parrado, A. (2007). Identification of apoptosis-related PLZF target genes. Biochemical and Biophysical Research Communications359(2), 317-322.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in Simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing analyses. Animals (Basel), 12(9), 1103.
Cassuce, D. C., Tinôco, I. D. F., Baêta, F. C., Zolnier, S., Cecon, P. R., & Vieira, M. D. F. (2013). Thermal comfort temperature update for broiler chickens up to 21 days of age. Engenharia Agrícola33, 28-36.
Chen, B., Piel, W. H., Gui, L., Bruford, E., & Monteiro, A. (2005). The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics86(6), 627-637.
Chen, B., Yang, B., Zhu, J., Wu, J., Sha, J., Sun, J., Bao, E. & Zhang, X. (2020). Hsp90 relieves heat stress-induced damage in mouse kidneys: Involvement of antiapoptotic PKM2-AKT and autophagic HIF-1α signaling. International Journal of Molecular Sciences21(5), 1646.
Cheng, S. Z., Guang-Xin, E., Liu, C. L., Basang, W. D., Zhu, Y. B., Na, R. S., Han, Y.G., Zeng, Y., Wang, X., Ni, W.W., Yang, B.G. & Huang, Y. F. (2020). SNP of AHSA2 gene in three cattle breeds using snapshot technology. Journal of Genetics99, 1-6.
Davis, S. & Meltzer, P.S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846-1847.
Dehghanian Reyhan, V., Ghafouri, F., Sadeghi, M., Miraei-Ashtiani, S.R., Kastelic, J.P., Barkema, H.W. &  Shirali, M. (2023). Integrated comparative transcriptome and circRNA-lncRNA-miRNA-mRNA ceRNA regulatory network analyses identify molecular mechanisms associated with intramuscular fat content in beef cattle. Animals, 13(16), 2598.
Dou, T., Zhao, S., Rong, H., Gu, D., Li, Q., Huang, Y., Xu, Z., Chu, X., Tao, L., Liu, L. and Ge, C. & Jia, J. (2017). Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds. BMC Genomics18, 1-12.
Du, P., Kibbe, W.A. & Lin, S.M. (2008). Lumi: a pipeline for processing Illumina microarray. Bioinformatics, 24(13), 1547-1548.
Ekhtiyari, M.S., Javanmard, A., Ghafouri, F., Sadr, A.S., Miraei-Ashtiani, S.R. & Shirali, M. (2023). Bioinformatics analysis of differentially gene expression profiles related to heat stress in brain, liver, and leg muscle of broiler chickens based on microarray technique. Iranian Journal of Animal Science, 54(3), 203-223 .(in Persian) .
Etches, R. J., John, T. M., & Gibbins, A. V. (2008). Behavioural, physiological, neuroendocrine and molecular responses to heat stress. Poultry Production in Hot Climates (pp. 48-79). Wallingford UK: CABI.
FAO (2022). Data from: Crops and livestock products dataset. License: CC BY-NC-SA 3.0 igo. Available at: http://www.fao.org/faostat/en/#data/QC (Accessed April 01, 2022).
Gautier, L., Cope, L., Bolstad, B.M. & Irizarry, R.A. (2004). Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20(3), 307-315.
Gerges, N. Z., Tran, I. C., Backos, D. S., Harrell, J. M., Chinkers, M., Pratt, W. B., & Esteban, J. A. (2004). Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. Journal of Neuroscience24(20), 4758-4766.
Ghafouri, F., Bahrami, A., Sadeghi, M., Miraei-Ashtiani, S.R., Bakherad, M., Barkema, H.W. & Larose, S. (2021). Omics multi-layers networks provide novel mechanistic and functional insights into fat storage and lipid metabolism in poultry. Frontiers in Genetics, 12, 646297.
Ghafouri, F., Dehghanian Reyhan, V., Sadeghi, M., Miraei-Ashtiani, S.R., Kastelic, J.P., Barkema, H.W. & Shirali, M. (2024a). Integrated analysis of transcriptome profiles and lncRNA–miRNA–mRNA competing endogenous RNA regulatory network to identify biological functional effects of genes and pathways associated with Johne’s disease in dairy cattle. Non-coding RNA, 10(4), 38.
Ghafouri, F., Dehghanian Reyhan, V., Sadeghi, M., Miraei-Ashtiani, S.R., Kastelic, J.P., Barkema, H.W. & Shirali, M., (2024b). Competing endogenous RNAs (ceRNAs) and application of their regulatory networks in complex traits and diseases of ruminants. Ruminants, 4(2), 165-181.
Ghafouri, F., Sadeghi, M., Bahrami, A., Naserkheil, M., Dehghanian Reyhan, V., Javanmard, A., Miraei-Ashtiani, S.R., Ghahremani, S., Barkema, H.W., Abdollahi-Arpanahi, R. & Kastelic, J.P. (2023). Construction of a circRNA–lincRNA–lncRNA–miRNA–mRNA ceRNA regulatory network identifies genes and pathways linked to goat fertility. Frontiers in Genetics, 14, 1195480.
Guerreiro, E. N., Giachetto, P. F., Givisiez, P. E. N., Ferro, J. A., Ferro, M. I. T., Gabriel, J. E., Furlan, R.L. & Macari, M. (2004). Brain and hepatic Hsp70 protein levels in heat-acclimated broiler chickens during heat stress. Brazilian Journal of Poultry Science6, 201-206.
He, X., Lu, Z., Ma, B., Zhang, L., Li, J., Jiang, Y., Zhou, G. & Gao, F. (2018). Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite and related hormones and genes expression in broilers. Journal of the Science of Food and Agriculture, 98(12), 4471-4478.
Heidarpour, F., Mohammadabadi, M. R., Zaidul, I. S. M., Maherani, B., Saari, N., Hamid, A. A., Abas, F., Manap, M. Y. A, Mozafari, M. R, (2011). Use of prebiotics in oral delivery of bioactive compounds: a nanotechnology perspective. Pharmazie. 66(5), 319-324.
Hightower, L. E., & Guidon Jr, P. T. (1989). Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. Journal of Cellular Physiology138(2), 257-266.
Hill, M., & Tran, N. (2021). miRNA interplay: mechanisms and consequences in cancer. Disease Models & Mechanisms14(4), dmm047662.
Holmes, J. L., Sharp, S. Y., Hobbs, S., & Workman, P. (2008). Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Research68(4), 1188-1197.
Hori, O., Matsumoto, M., Kuwabara, K., Maeda, Y., Ueda, H., Ohtsuki, T., Kinoshita, T., Ogawa, S., Stern, D.M. & Kamada, T. (1996). Exposure of astrocytes to hypoxia/reoxygenation enhances expression of glucose‐regulated protein 78 facilitating astrocyte release of the neuroprotective cytokine interleukin 6. Journal of Neurochemistry66(3), 973-979.
Hosseinzadeh, S. & Hasanpur, K. (2024). Whole genome discovery of regulatory genes responsible for the response of chicken to heat stress. Scientific Reports, 14(1), 6544.
Hu, L., Fang, H., Abbas, Z., Luo, H., Brito, L. F., Wang, Y., & Xu, Q. (2024). The HSP90AA1 Gene Is Involved in heat stress responses and its functional genetic polymorphism are associated with heat tolerance in Holstein cows. Journal of Dairy Science.
Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B.S., Bravo, H.C., Davis, S., Gatto, L., Girke, T. & Gottardo, R. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods, 12(2), 115-121.
Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S. E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII.1.1) isolated in Iran. Veterinary Research Forum, 14(4), e221.
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods12(4), 357-360.
Kong, L. N., Zhang, D. X., Ji, C. L., Zhang, X. Q., & Luo, Q. B. (2015). Association analysis between SNPs in the 5’-flanking region of the chicken GRP78 gene, thermotolerance parameters, and tissue mRNA expression. Genet. Mol. Res14, 6110-6123.
Kubota, S., Pasri, P., Okrathok, S., Jantasaeng, O., Rakngam, S., Mermillod, P., & Khempaka, S. (2023). Transcriptome analysis of the uterovaginal junction containing sperm storage tubules in heat-stressed breeder hens. Poultry Science102(8), 102797.
Lee-Yoon, D., Easton, D., Murawski, M., Burd, R., & Subjeck, J. R. (1995). Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. Journal of Biological Chemistry270(26), 15725-15733.
Li, G., Zhao, H., Guo, H., Wang, Y., Cui, X., Li, H., Xu, B. & Guo, X. (2020). Analyses of the function of DnaJ family proteins reveal an underlying regulatory mechanism of heat tolerance in honeybee. Science of the Total Environment716, 137036.
Li, Z., & Li, Z. (2012). Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer1826(1), 13-22.
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30(7), 923-930.
Lin, Y., Ji, Z., Li, C., Liang, Q., Shi, J., Su, Z., Yao, X. & Zhang, X. (2024). Proteomics analysis for key molecules in adrenal glands of Wenchang chickens for their resistance to heat stress. Poultry Science103(11), 104161.
Liu, Z., Liu, Y., Xing, T., Li, J., Zhang, L., Zhao, L., Jiang, Y. & Gao, F. (2024). Unraveling the role of long non-coding RNAs in chronic heat stress-induced muscle injury in broilers. Journal of Animal Science and Biotechnology, 15(1), 135.
Livingston, M. L., Pokoo-Aikins, A., Frost, T., Laprade, L., Hoang, V., Nogal, B., Phillips, C. & Cowieson, A. J. (2022). Effect of heat stress, dietary electrolytes, and vitamins E and C on growth performance and blood biochemistry of the broiler chicken. Frontiers in Animal Science3, 807267.
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15(12), 1-21.
Lu, T., Li, L., Li, Y., & Li, X. (2023). RNA-sequencing reveals differentially expressed genes of laying hens fed Baihu Decoction under heat shock. The Journal of Poultry Science60(2), 2023012.
Luo, Q. B., Song, X. Y., Ji, C. L., Zhang, X. Q., & Zhang, D. X. (2014). Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene546(2), 200-205.
Madkour, M., Salman, F.M., El-Wardany, I., Abdel-Fattah, S.A., Alagawany, M., Hashem, N.M., Abdelnour, S.A., El-Kholy, M.S. & Dhama, K. (2022). Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. Journal of Thermal Biology, 103, 103169.
Marangoni, F., Corsello, G., Cricelli, C., Ferrara, N., Ghiselli, A., Lucchin, L. & Poli, A. (2015). Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document. Food & Nutrition Research, 59(1), 27606.
McInnes, L., Healy, J. & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. ArXiv Preprint ArXiv:1802.03426.
McKenna, L. B., Schug, J., Vourekas, A., McKenna, J. B., Bramswig, N. C., Friedman, J. R., & Kaestner, K. H. (2010). MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology139(5), 1654-1664.
Mohamed, B. A., Barakat, A. Z., Zimmermann, W. H., Bittner, R. E., Mühlfeld, C., Hünlich, M., Engel, W., Maier, L.S. & Adham, I. M. (2012). Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis. Journal of Molecular and Cellular Cardiology53(4), 459-468.
Mohammadabadi, M., Babenko, I. O., Borshch, O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measuring the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16(3), 317-332.
Naserkheil, M., Ghafouri, F., Zakizadeh, S., Pirany, N., Manzari, Z., Ghorbani, S., Banabazi, M.H., Bakhtiarizadeh, M.R., Huq, M.A., Park, M.N. & Barkema, H.W. (2022). Multi-omics integration and network analysis reveal potential hub genes and genetic mechanisms regulating bovine mastitis. Current Issues in Molecular Biology, 44(1), 309-328.
Nepusz, T., Yu, H. & Paccanaro, A. (2012). Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 9(5), 471-472.
Pritchett, E. M., Van Goor, A., Schneider, B. K., Young, M., Lamont, S. J., & Schmidt, C. J. (2023). Chicken pituitary transcriptomic responses to acute heat stress. Molecular Biology Reports50(6), 5233-5246.
Rauch, J. N., Zuiderweg, E. R., & Gestwicki, J. E. (2016). Non-canonical interactions between heat shock cognate protein 70 (Hsc70) and Bcl2-associated anthanogene (BAG) co-chaperones are important for client release. Journal of Biological Chemistry291(38), 19848-19857.
Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J. L., & Collier, R. J. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal6(5), 707-728.
Reyhan, V. D., Sadeghi, M., Miraei-Ashtiani, S. R., Ghafouri, F., Kastelic, J. P., & Barkema, H. W. (2022). Integrated transcriptome and regulatory network analyses identify candidate genes and pathways modulating ewe fertility. Gene Reports, 28, 101659.
Ritchie, M.E., Phipson, B., Wu, D.I., Hu, Y., Law, C.W., Shi, W. & Smyth, G.K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47-e47.
Robichon, C., Varret, M., Le Liepvre, X., Lasnier, F., Hajduch, E., Ferré, P. & Dugail, I. (2006). DnaJA4 is a SREBP-regulated chaperone involved in the cholesterol biosynthesis pathway. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1761(9), 1107-1113.
Rosenzweig, R., Nillegoda, N. B., Mayer, M. P., & Bukau, B. (2019). The Hsp70 chaperone network. Nature Reviews Molecular Cell Biology, 20(11), 665-680.
Safaei, S. M. H., Dadpasand, M., Mohammadabadi, M., Atashi, H., Stavetska, R., Klopenko, N., & Kalashnyk, O. (2022). An Origanum majorana leaf diet influences Myogenin gene expression, performance, and carcass characteristics in lambs. Animals (Basel), 13(1), 14.
Safdar, M., & Özaslan, M. (2023). MicroRNAs as potential biomarkers for heat stress in livestock. Zeugma Biological Science4(2), 6-12.
Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final Report.
Smith, M. H., Ploegh, H. L., & Weissman, J. S. (2011). Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science334(6059), 1086-1090.
Song, X.Y., Luo, Q.B. & Zhang, X.Q. (2012). Gene expression profiling of three tissues in chicken with heat stress by Affymetrix microarray. Available online at: https://www.ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE23592
Subjeck, J. R., Sciandra, J. J., Chao, C. F., & Johnson, R. J. (1982). Heat shock proteins and biological response to hyperthermia. The British Journal of Cancer. Supplement5, 127.
Sun, L., Prince, T., Manjarrez, J. R., Scroggins, B. T., & Matts, R. L. (2012). Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research1823(6), 1092-1101.
Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P. & Jensen, L.J. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), 607-613.
Tona, G. O. (2018). Current and future improvements in livestock nutrition and feed resources. Animal Husbandry and Nutrition18, 73088.
Triantafilou, M., Fradelizi, D., & Triantafilou, K. (2001). Major histocompatibility class one molecule associates with glucose regulated protein (GRP) 78 on the cell surface. Human Immunology62(8), 764-770.
Wu, X., Du, X., Pian, H. & Yu, D. (2024). Effect of curcumin on hepatic mRNA and lncRNA Co-expression in heat-stressed laying hens. International Journal of Molecular Sciences, 25(10), 5393.
Yao, X., Zhu, J., Li, L., Yang, B., Chen, B., Bao, E., & Zhang, X. (2023). Hsp90 protected chicken primary myocardial cells from heat-stress injury by inhibiting oxidative stress and calcium overload in mitochondria. Biochemical Pharmacology209, 115434.
Zhao, Y., Wong, L. & Goh, W.W.B. (2020). How to do quantile normalization correctly for gene expression data analyses. Scientific Reports, 10(1), 1-11.