منابع
عزیزپور، ن؛ خلتآبادی فراهانی، ا.ح؛ مرادی، م.ح؛ محمدی، ح. (1399). مطالعه پویش کل ژنومی صفات مرتبط با تولید شیر بر پایه تجزیه و تحلیل غنیسازی مجموعههای ژنی در گاو هلشتاین. نشریه پژوهشهای علوم دامی، 30 (1)، 92-79.
محمدی، ح؛ خلتآبادی فراهانی، ا.ح؛ مرادی، م.ح؛ نجفی، ا. (1401). مطالعه پویش کامل ژنوم با تجزیه و تحلیل غنیسازی مجموعههای ژنی برای شناسایی ژنها و مسیرهای مرتبط با خلقوخوی در گاو براهمن. مجله تولیدات دامی، 24 (4)، 490-481.
REFERENCES
Abernethy, D., Denny, G., Menzies, F., McGuckian, P., Honhold, N., & Roberts, A. (2006). The Northern Ireland programme for the control and eradication of Mycobacterium bovis. Veterinary Microbiology, 112, 231–237.
Abernethy, D.A., Upton, P., Higgins, I.M., McGrath, G., Goodchild, A.V., Rolfe, S.J.,
Broughan, J.M.,
Downs, S.H.,
Clifton-Hadley, R.,
Menzies, F.D.,
de la Rua-Domenech, R.,
Blissitt, M.J.,
Duignan, A., &
More, S.J. (2013). Bovine tuberculosis trends in the UK and the Republic of Ireland.
Veterinary Records, 172, 312.
Alain, K., Karrow, N.A., Thibault, C., Pierre, J., Lessard, M., & Bissonnette, N. (2009). An early innate immune marker of Escherichia coli mastitis harbors genetic polymorphisms with possible links with resistance to mastitis. BMC Genomics, 10, 444.
Alavi, M., Mozafari, M.R., Ghaemi, S., Ashengroph, M., Hasanzadeh Davarani, F., & Mohammadabadi, M. (2022). Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines, 10(12), 3074.
Allen, A.R., Skuce, R.A., & Byrne, A.W. (2018). Bovine Tuberculosis in Britain and Ireland-A Perfect Storm? the confluence of potential ecological and epidemiological impediments to controlling a chronic infectious disease. Frontiers in Veterinary Science. 5, 109.
Alonso-Hearn, M., Badia-Bringué, G., & Canive, M. (2022). Genome-wide association studies for the identification of cattle susceptible and resilient to paratuberculosis. Frontiers in Veterinary Science. 9, 935133.
Amiri Roudbar, M., Mohammadabadi, M.R., Ayatollahi Mehrgardi, A., Brito Lopes, F., Gianola, D., & Rosa, G.J. (2020). Integration of single nucleotide variants and whole-genome DNA methylation profiles for classification of rheumatoid arthritis cases from controls. Heredity, 124 (5), 658-674.
Barazandeh, A., Mohammadabadi, M.R., Ghaderi-Zefrehei, M., & Nezamabadi-Pour, H. (2016). Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech Journal of Animal Science, 61(11), 487–495.
Bermingham, M.L.,
Bishop, S.C.,
Woolliams, J.A.,
Pong-Wong, R.,
Allen, A.R.,
McBride, S.H.,
Ryder, J.J.,
Wright, D.M.,
Skuce, R.A.,
McDowell, S.W.J.,
& Glass, E.J. (2014). Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis.
Heredity, 112, 543–551.
Bermingham, M.L., More, S., Good, M., Cromie, A., Higgins, I., Brotherstone, S., & Berry, T.P. (2009). Genetics of tuberculosis in Irish Holstein–Friesian dairy herds. Journal of Dairy Science, 92, 3447.
Bermingham, M.L., More, S.J., Good, M., Cromie, A.R., Higgins, I.M., & Berry, D.P. (2010). Genetic correlations between measures of Mycobacterium bovis infection and economically important traits in Irish Holstein–Friesian dairy cows. Journal of Dairy Science, 93, 5413–5422.
Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing. Animals, 12 (9), e1103.
Brajnik, Z., & Ogorevc, J. (2023). Candidate genes for mastitis resistance in dairy cattle: a data integration approach. Journal of Animal Science and Biotechnology, 14, 10.
Canive, M., Badia-Bringué, G., Vázquez, P., Garrido, J.M., Juste, R.A., Fernandez, A., González-Recio, O. & Alonso-Hearn, M. (2022). A genome-wide association study for tolerance to paratuberculosis identifies candidate genes involved in dna packaging, dna damage repair, innate immunity, and pathogen persistence. Frontiers Immunology, 13, 820965.
Chen, Y.C., Guo, Y.F., He, H., Lin, X., Wang, X.F., Zhou, R., Li, W.T., Pan, D.Y., Shen, J., & Deng, H.W. (2016). Integrative analysis of genomics and transcriptome data to identify potential functional genes of BMDs in females. Journal of Bone and Mineral Research, 31, 1041-1049.
Chen, Z., Bian, Z., Chen, X., Li, B., & Li, L. (2023). Identification of key genes in bovine mammary epithelial cells challenged with Escherichia coli and Staphylococcus aureus by integrated bioinformatics analysis. Revista Brasileira de Zootecnia, 52, e20220064.
Donaldson, L., Vuocolo, T., Gray, C., Strandberg, Y., Reverter, A., McWilliam, S., Wang, Y., Byrne, K., & Tellam, R. (2005). Construction and validation of a bovine innate immune microarray. BMC Genomics, 6, 1-22.
Finlay, E.K., Berry, D.P., Wickham, B., Gormley, E.P., & Bradley, D.G. (2012). A genome wide association scan of bovine tuberculosis susceptibility in Holstein–Friesian dairy cattle. PLoS One, 7, e30545.
Frie, M.C., Droscha, C.J., Greenlick, A.E., & Coussens, P.M.. (2018). MicroRNAs encoded by bovine leukemia virus (blv) are associated with reduced expression of b cell transcriptional regulators in dairy cattle naturally infected with BLV. Frontiers Veterinary Science, 4, 245.
González-Ruiz, S.,
Strillacci, M.G.,
Durán-Aguilar, M.,
Cantó-Alarcón, G.J.,
Herrera-Rodríguez, S.E.,
Bagnato, A.,
Guzmán, F.,
Milián-Suazo, F.,
& Román-Ponce, S.I. (2019). Genome-wide association study in Mexican Holstein cattle reveals novel quantitative trait loci regions and confirms mapped loci for resistance to bovine tuberculosis.
Animals, 9(9),636.
Heidarpour, F., Mohammadabadi, M.R., Zaidul, I.S.M., Maherani, B., Saari, N., Abbas, F., & Mozafari, M.R. (2011). Use of prebiotics in oral delivery of bioactive compounds: a nanotechnology perspective. Pharmazie, 66 (5), 319-324.
Holder, A., Garty, R., Elder, C., Mesnard, P., Laquerbe, C., Bartens, M.C., & Connelly, T. (2020). Analysis of genetic variation in the Bovine SLC11A1 gene, its influence on the expression of NRAMP1 and potential association with resistance to Bovine Tuberculosis. Frontiers in microbiology, 11, 1420.
Huang, X.L., Xu, D.H., Wang, G.P., Zhang, S., & Yu C.G. (2015). Associations between CD24 gene polymorphisms and inflammatory bowel disease: A meta-analysis. World Journal of Gastroenterology, 21(19), 6052.
Kadarmideen, H.N. (2014). Genomics to systems biology in animal and veterinary sciences: progress, lessons and opportunities. Livestock Science, 166, 232-248.
Kadarmideen, H.N., Ali, A.A., Thomson, P.C., Muller, B., & Zinsstag, J. (2011). Polymorphisms of the SLC11A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Animal Genetics, 42, 656–658.
Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S.E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII. 1.1) isolated in Iran. Veterinary Research Forum, 14 (4), 221.
Mazzone, P., Di Paolo, A., Petrucci, L., Torricelli, M., Corneli, S., Sebastiani, C., Ciullo, M., Sebastianelli, M., Costarelli, S., & Scoccia, E. (2023). Evaluation of single nucleotide polymorphisms (snps) associated with genetic resistance to bovine paratuberculosis in marchigiana beef cattle, an Italian native breed. Animals, 13(4), 587.
Mazzoni, G., Pedersen, H.S., de Oliveira Junior, G.A., Alexandre, P., Razza, E.M., Callesen H, Hyttel, P., Marcelo, F.G., Ferraz, J.B., & Kadarmideen, H.N. (2017). Application of integrative genomics and systems biology to conventional and in vitro reproductive traits in cattle. Animal Reproduction, 14(3), 507-513.
Michel, A.L., Muller, B., & van Helden, P.D. (2010). Mycobacterium bovis at the animal–human interface: a problem, or not? Veterinary Microbiology, 140, 371–381.
Mohammadabadi, M., Babenko, O., Borshch, O.O., Kalashnyk, O., Ievstafiieva, Y., & Buchkovska, V. (2024). Measurement of the relative expression pattern of the UCP2 gene in different tissues of the Raini Cashmere goat. Agricultural Biotechnology Journal, 16 (3), 317-332.
Mooney, M.A., Nigg, J.T., McWeeney, S.K., & Wilmot, B. (2014). Functional and genomic context in pathway analysis of GWAS data. Trends Genetics, 30(9), 390-400.
Moré, D.D., Cardoso, F.F., Mudadu, M.A., Malagó-Jr, W., Gulias-Gomes, C.C., Sollero, B.P., Ibelli, A.M., Coutinho, L.L., & Regitano, L.C. (2019). Network analysis uncovers putative genes affecting resistance to tick infestation in Braford cattle skin. BMC genomics, 20, 1-20.
Peñagaricano, F., Weigel, K.A., Rosa, G.J., & Khatib, H. (2013). Inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Frontiers Genetics, 3, 307-314.
Perry, B.D., Randolph, T.F., McDermott, J.J., Sones, K.R., & Thornton, P.K. (2002). Investing in animal health research to alleviate poverty. ILRI (International Livestock Research Institute): Nairobi, Kenya.
Pineda, S., Nikolova-Krstevski, V., Leimena, C., Atkinson, A.J., Altekoester, A.K., Cox, C.D., Jacoby, A., Huttner, I.G., Ju, Y.K., Soka, M., & Ohanian, M. (2021). Conserved role of the large conductance calcium-activated potassium channel, KCa1. 1, in sinus node function and arrhythmia risk. Genomic and Precision Medicine, 14(2), e003144.
Prohaszka, Z., & Fust, G. (2004). Immunological aspects of heat-shock proteins-the optimum stress of life. Molecular Immunology, 41, 29-44.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D.,Maller, J., Sklar, P., Bakker, P.I., Daley, M.J., & Sham, P.C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559–575.
Safaei, S.M.H., Dadpasand, M., Mohammadabadi, M., Atashi, H., Stavetska, R., Klopenko, N., & Kalashnyk, O. (2022). An Origanum majorana Leaf Diet Influences Myogenin Gene Expression, Performance, and Carcass Characteristics in Lambs. Animals, 13 (1), e14.
Scott, M.A., Woolums, A.R., Swiderski, C.E., Perkins, A.D., Nanduri, B. (2021). Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology. Scientific Reports, 11(1), 22916.
Sharifi, S., Pakdel, A., Jahanbakhsh, J., Aryan, Y., Mahdavi, A., & Ebrahimie, E. (2020). Molecular mechanisms of resistance to bovine mastitis. Livestock Science, 239, 104068.
Sun, L., Song, Y., Riaz, H., Yang, H., Hua, G., Guo, A., & Yang, L. (2012). Polymorphisms in toll-like receptor 1 and 9 genes and their association with tuberculosis susceptibility in Chinese Holstein cattle. Veterinary Immunology Immunopathology, 147, 195–201.
Visscher, P.M., Brown, M.A., McCarthy, M.I., & Yang, J. (2012). Five years of GWAS discovery. The American Journal of Human Genetics, 90(1), 7-24.
Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., & Yang, J. (2010). 10 Years of GWAS Discovery: Biology, Functioning and Translation. American Journal of Human Genetics, 90(1), 7-24.
Wang, X., Ma, P., Liu, J, Zhang, Q., Zhang, Y., Ding, X., Jiang, L., Wang, Y., Zhang, Y., Sun, D., Zhang, S., Su, G., & Yu, Y. (2015). Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC genetics, 16(1), 111.
Wang, Z., Shen, D., Parsons, D.W., Bardelli, A., Sager, J., Szabo, S., Ptak, J., Silliman, N., Peters, B.A., van der Heijden, M.S., Parmigiani, G., Yan, H., Wang, T.L., Riggins, G., Powell, S.M., Willson, J.K., Markowitz, S., Kinzler, K.W., Vogelstein, B., & Velculescu, V.E. (2004). Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science, 304, 1164–1166.
Yang, H., Yang, Y.L., Li, G.Q., Yu, Q., Yang, J. (2021). Identifications of immune-responsive genes for adaptative traits by comparative transcriptome analysis of spleen tissue from Kazakh and Suffolk sheep. Scientific Reports, 11(1), 3157.