کاوش ژنومی نشانه های انتخاب جهت شناسایی مکان های کروموزومی مرتبط با بیماری یون در گاوهای هلشتاین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی دانشگاه تهران، کرج، البرز، ایران:

2 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی دانشگاه تهران، کرج، البرز، ایران

3 گروه علوم دامی ، دانشکده کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران.

4 گروه علوم دامی، دانشکده کشاورزی و منابع طبیعی دانشگاه بوکو، وینا، اتریش

5 گروه علوم دامی، پردیس ارس، دانشگاه تهران، جلفا، ایران

چکیده

انتخاب باعث ایجاد نشانه­های انتخاب در سطح ژنوم می­­شود. شناسایی نشانه­های انتخاب در حیوانات در جهت ارتقا صفات اقتصادی و کاهش بیماریها، یکی از اصلی­ترین و چالش برانگیزترین تحقیقات در زمینه ژنتیک جمعیت است. در این تحقیق، با هدف شناسایی مناطق ژنومی تحت انتخاب مثبت بین جمعیت­های گاوهای مبتلا به بیماری یون و سالم هلشتاین، پویش گستره ژنوم با استفاده از چندشکلی­های تک نوکلئوتیدی (SNP) انجام شد. این تحقیق بر روی گاو­های گاوداری فوکا در اصفهان بر روی 145 راس گاو هلشتاین انجام شد. بر اساس تراشه‌های 30K شرکت ایلومینا تعیین ژنوتیپ و گاو­ها به دو گروه بیمار و سالم گروه بندی شدند. گروه بیمار شامل 45 راس و گروه سالم شامل 100 راس گاو بود. در این مطالعه برای شناسایی مناطق ژنومی تحت انتخاب از دو آماره FST و XP-EHH استفاده شد. ژن­های شناسایی شده توسط آماره FST در دو جمعیت بیمار و سالم شاملRAB37, ZC3H10, ESR1 HSD17B6, KCNC4, ERBB3 و NACA بودند. ژن­های شناسایی شده توسط آماره XP-EHH در دو جمعیت بیمار و سالم شاملAK1, ATP8A1, BTBD1, C1GALT1, CCDC6, CEP295, CLGN, CLSTN2, EHHADH,  ERBB4, FRK, GRID2, GRIP1 و LRP6  بودند. اکثر ژن های شناسایی شده در این مطالعه با ایمنی، بیماری هایی مثل سرطان، شیردهی، ماهیچه های اسکلتی، چرخه فحلی، مصرف خوراک، چسبندگی اسپرم و رشد در ارتباط بود، که جزو صفات و ویژگی های مهم زیستی جاندار قرار می گیرد. مطمئناً مطالعات گسترده­تر با تعداد نمونه­های بیشتر، درک بهتری از ژن­های کاندید برای بیماری یون در گاو و طراحی برنامه­های اصلاح نژادی موفق در جهت کاهش هزینه­های ناشی از بیماری، ایجاد خواهد نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Genomic probing of selection signature to detect chromosomal region related to Johne’s disease in Holstein cattle

نویسندگان [English]

  • fateme naveshki 1
  • Hossein Moradi Shahrbabak 2
  • Ali Sadeghi-Sefidmazgi 3
  • Johan Soelkner 4
  • Mahdi JavanNikkhah 5
1 Department of Animal Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran
2 Department of Animal Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran
3 Department of Animal Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Alborz, Iran.
4 Department for Sustainable Agricultural Systems University of Natural Resources and Life Sciences,
5 Department of Animal Science, Ares Campus, University of Tehran, Jolfa, Iran
چکیده [English]

Selection as a factor increases the frequency of positive mutations in some subpopulations and creates selection signatures in the genome. Identifying the selection signatures in animals aimed at promoting economic traits and reducing diseases is one of the main and most challenging research areas in population genetics. This study aimed to conduct an extensive genome scan using single nucleotide polymorphisms (SNPs) to identify genomic regions under positive selection between diseased and healthy Holstein cattle populations. The data included 145 Holstein cows from Foka. These cows were genotyped using Illumina 30K chips. The cows were divided into diseased (45 cows) and healthy (100 cows) groups. FST and XP-EHH statistics were used in this study to identify genomic regions under selection. The genes identified by FST statistics in both diseased and healthy populations included RAB37, ZC3H10, ESR1, HSD17B6, KCNC4, and ERBB3. Genes identified by XP-EHH statistics in both diseased and healthy populations included AK1, ATP8A1, BTBD1, C1GALT1, CCDC6, CEP295, CLGN, CLSTN2, EHHADH, ERBB4, FRK, GRID2, GRIP1, and LRP6. Most of the genes identified in this study were related to immunity, diseases such as cancer, lactation, skeletal muscles, estrous cycle, feed consumption, sperm adhesion, and growth, which are among the important biological traits and characteristics of living organisms. Further research using an increased sample size in the population will provide a better understanding of candidate genes for ion disease in cattle. Moreover, the design of successful breeding programs will help reduce the costs associated with this disease.

کلیدواژه‌ها [English]

  • Ion disease
  • Holstein cow
  • selection signatures
  • FST
  • XP-EHH

Extended Abstract

Introduction

Ion's disease, pseudotuberculosis, or paratuberculosis is a chronic infectious disease of the digestive system and small intestines in domestic and wild ruminants caused by Mycobacterium ovium subspecies paratuberculosis [1]. The disease is common in cattle and, to some extent, in sheep and goats [2]. The characteristics of this disease include granulomatous enterocolitis and lymphadenitis [3]. Due to the slow spread of the disease, ion disease occurs in isolation [4]. In cattle, clinical symptoms do not appear until two years of age due to the long incubation period [5]. Ion disease is responsible for significant economic losses in dairy herds worldwide, leading to reduced milk production, increased management costs, and premature culling or death due to clinical disease [7]. The alteration of the pattern of genetic diversity and linkage disequilibrium of the connected loci with a beneficial mutation during selection is called a Selective Sweep. These regions are related to major effect genes and genes affecting production traits and reproduction, making them of special importance as valuable sources of information for further research [8]. Therefore, identifying susceptible and resistant animals to this disease can play a significant and important role in preventing or reducing contamination of cattle farms with this infection. This study aims to identify genomic regions under selection related to this disease in two populations of diseased and healthy Holstein cattle using single nucleotide markers (SNPs).

 

Materials and Methods

The present study was conducted at Foka cattle ranch in Isfahan. Initially, in the laboratory, the blood samples of the cows were tested for ion disease with ELISA. Subsequently, the cows were categorized into two groups: sick and healthy, comprising 45 sick cattle and 100 healthy cattle. Both groups were genotyped based on microarrays and SNPchip30k. To ensure the quality of the genotype data, various filtration steps were applied to the raw data using Plink software. To investigate the genomic pattern of positive selection in this disease, theta values for each SNP were calculated using the unbiased θ estimator method [10] in the R x64 4.0.4 software environment. Instead of the numerical theta value of each SNP, the average of 5 adjacent SNPs within a 300 kbp range was used to better identify the selection signals. Ancestral alleles were not required to identify the regions under selection [12]. In the XP-EHH test, haplotypes in two populations were compared to consider the variation in the recombination rate across different genomic regions. The R x64 4.0.4 software and rehh package were used to identify selection signals in two populations. After identifying the selected regions, Illumina's gene list was used in the Plink v1.9 software environment to identify the genes related to these regions. To identify important KEGG metabolic pathways, ClueGo version 2.5.6, a Cytoscape plugin that provides biological annotations of genes, was used [13].

 

Results

After quality control of the data, 28,749 SNP markers were selected for further analysis. The genomic distribution of FST was determined using the win5 method for all SNPs across the genome. The results showed that several genomic regions had high population differences among adjacent SNPs. In this research, 79 genomic regions on 6 chromosomes were identified between the two populations of diseased and healthy cattle. After analyzing the regions under selection, 34 genes were identified in two populations of sick and healthy Holstein cows using FST statistics. The XP-EHH statistic indicated the presence of selection in the patient population when it was negative and in the healthy population when it was positive. Regions of the genome with high XP-EHH values were indicative of population differentiation in those genomic regions due to the disease. The results showed that 170 regions on different chromosomes were identified in the healthy population, and 156 genomic regions were identified on different chromosomes in the patient population. After analyzing the selected regions, 50 genes were identified in the diseased population, and 62 genes were identified in the healthy population of Holstein cows using the XP-EHH statistic.

 

Conclusion

Most of the genes identified in this study were related to immunity, diseases such as cancer, lactation, skeletal muscles, estrous cycle, feed consumption, sperm adhesion, and growth. These traits are among the important biological characteristics of living organisms. The results of this research, by identifying potential candidate genes related to ion disease and changes in the genome due to the disease, can be used in breeding programs for Holstein cows in the given country.

Amiri, M., Conserva, F., Panayiotou, C., Karlsson, A., & Solaroli, N. (2013). The human adenylate kinase 9 is a nucleoside mono-and diphosphate kinase. The International Journal of Biochemistry & Cell Biology, 45(5), 925-931. https://doi.org/10.1016/j.biocel.2013.02.004
Berger, F., Berkholz, J., Breustedt, T., Ploen, D., & Munz, B. (2012). Skeletal muscle-specific variant of nascent polypeptide associated complex alpha (skNAC): implications for a specific role in mammalian myoblast differentiation. European Journal of Cell Biology, 91(2), 150-155. https://doi.org/10.1016/j.ejcb.2011.10.004
Bertolini, F., Moscatelli, G., Schiavo, G., Bovo, S., Ribani, A., Ballan, M., ... & Fontanesi, L. (2022). Signatures of selection are present in the genome of two close autochthonous cattle breeds raised in the North of Italy and mainly distinguished for their coat colours. Journal of Animal Breeding and Genetics, 139(3), 307-319. https://doi.org/10.1111/jbg.12659
Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., ... & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25(8), 1091-1093. https://doi.org/10.1093/bioinformatics/btp101
Breitenkamp, A. F., Matthes, J., Nass, R. D., Sinzig, J., Lehmkuhl, G., Nürnberg, P., & Herzig, S. (2014). Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. PLoS One, 9(4), e95579. https://doi.org/10.1371/journal.pone.0095579
Chang, C. W., Hsu, W. B., Tsai, J. J., Tang, C. J. C., & Tang, T. K. (2016). CEP295 interacts with microtubules and is required for centriole elongation. Journal of cell science, 129(13), 2501-2513. https://doi.org/10.1242/jcs.186338
Chiodini, R. J., Van Kruiningen, H. J., & Merkal, R. S. (1984). Ruminant paratuberculosis (Johne's disease): The current status and future prospects. Cornell veterinarian, 74(3), 218-262.
Choi, J., Young, J. A., & Callaway, E. M. (2010). Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor–ligand bridge protein. Proceedings of the National Academy of Sciences, 107(38), 16703-16708. https://doi.org/10.1073/pnas.1006233107
Clarke, C. J. (1997). The pathology and pathogenesis of paratuberculosis in ruminants and other species. Journal of comparative pathology, 116(3), 217-261. https://doi.org/10.1016/S0021-9975(97)80001-1
Du, C., Deng, T. X., Zhou, Y., Ghanem, N., & Hua, G. H. (2020). Bioinformatics analysis of candidate genes for milk production traits in water buffalo (Bubalus bubalis). Tropical animal health and production, 52, 63-69. https://doi.org/10.1007/s11250-019-01984-1
Elegheert, J., Kakegawa, W., Clay, J. E., Shanks, N. F., Behiels, E., Matsuda, K., ... & Aricescu, A. R. (2016). Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 353(6296), 295-299. https://doi.org/10.1126/science.aae0104
Fang, H., Ao, S., Yun, L., Jianbo, L., Haobang, L., Yang, L., ... & Kangle, Y. (2022). Exploring the Genetic Basis of Xiangxi Cattle Ovary Reproduction: A Rudimentary Study of Ovary Transcriptome in Xiangxi and Angus Cattle. Pakistan Veterinary Journal, 42(2).
Ferreira, M. A., O'Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., ... & Craddock, N. (2008). Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature genetics, 40(9), 1056-1058. https://doi.org/10.1038/ng.209
Fortes, M. R. S., Reverter, A., Kelly, M., McCulloch, R., & Lehnert, S. A. (2013). Genome‐wide association study for inhibin, luteinizing hormone, insulin‐like growth factor 1, testicular size and semen traits in bovine species. Andrology, 1(4), 644-650. https://doi.org/10.1111/j.2047-2927.2013.00101.x
Furukawa, M., He, Y. J., Borchers, C., & Xiong, Y. (2003). Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nature cell biology, 5(11), 1001-1007. https://doi.org/10.1038/ncb1056
Gaudet, P., Livstone, M. S., Lewis, S. E., & Thomas, P. D. (2011). Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Briefings in bioinformatics, 12(5), 449-462. https://doi.org/10.1093/bib/bbr042
Ghanshani, S., Pak, M., McPherson, J. D., Strong, M., Dethlefs, B., Wasmuth, J. J., ... & Chandy, K. G. (1992). Genomic organization, nucleotide sequence, and cellular distribution of a Shaw-related potassium channel gene, Kv3. 3, and mapping of Kv3. 3 and Kv3. 4 to human chromosomes 19 and 1. Genomics, 12(2), 190-196. https://doi.org/10.1016/0888-7543(92)90365-Y
Grasa, P., Ploutarchou, P., & Williams, S. A. (2015). Oocytes lacking O‐glycans alter follicle development and increase fertility by increasing follicle FSH sensitivity, decreasing apoptosis, and modifying GDF9: BMP15 expression. The faseb journal, 29(2), 525-539. https://doi.org/10.1096/fj.14-253757
Gyles, C.L. and Theon, O.C. (1993). Pathogenesis of Bacterial Infection in Animals.2ed edition. USA: Ames, Iowa, Iowa State University, pp: 44-54.
Hayes, B. J., Chamberlain, A. J., Maceachern, S., Savin, K., McPartlan, H., MacLeod, I., ... & Goddard, M. E. (2009). A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Animal genetics, 40(2), 176-184. https://doi.org/10.1111/j.1365-2052.2008.01815.x
Houten, S. M., Denis, S., Argmann, C. A., Jia, Y., Ferdinandusse, S., Reddy, J. K., & Wanders, R. J. (2012). Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. Journal of lipid research, 53(7), 1296-1303. https://doi.org/10.1194/jlr.M024463
Huang, X. F. (2000). Molecular characterization of a first human 3 (α→ β)-hydroxysteroid epimerase. Journal of Biological Chemistry, 275(38), 29452-29457. https://doi.org/10.1074/jbc.M000562200
Ikawa, M., Nakanishi, T., Yamada, S., Wada, I., Kominami, K., Tanaka, H., ... & Okabe, M. (2001). Calmegin is required for fertilin α/β heterodimerization and sperm fertility. Developmental biology, 240(1), 254-261. https://doi.org/10.1006/dbio.2001.0462
Izquierdo, D., Wang, W. J., Uryu, K., & Tsou, M. F. B. (2014). Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell reports, 8(4), 957-965. http://dx.doi.org/10.1016/j.celrep.2014.07.022
Jeyabalan, N., & Clement, J. P. (2016). SYNGAP1: mind the gap. Frontiers in cellular neuroscience, 10, 32. https://doi.org/10.3389/fncel.2016.00032
Jia, Z., Chen, A., Wang, C., He, M., Xu, J., Fu, H., ... & Guo, Z. (2019). Amelioration effects of Kaempferol on immune response following chronic intermittent cold-stress. Research in veterinary science, 125, 390-396. https://doi.org/10.1016/j.rvsc.2019.08.012
Jones, T. C., Hunt, R. D., & King, N. W. (1997). Canine distemper. Veterinary Pathology, sixth ed. Williams & Wilkins, Baltimore, 311-315.
Kato, M., Takaishi, H., Yoda, M., Tohmonda, T., Takito, J., Fujita, N., ... & Chiba, K. (2010). GRIP1 enhances estrogen receptor α-dependent extracellular matrix gene expression in chondrogenic cells. Osteoarthritis and Cartilage, 18(7), 934-941. https://doi.org/10.1016/j.joca.2010.03.008
Kennedy, D. J., & Benedictus, G. (2001). Control of Mycobacterium avium subsp. paratuberculosis infection in agricultural species. Revue Scientifique et Technique-Office International des Epizooties, 20(1), 151-179.
Li, G., Yang, R., Lu, X., Liu, Y., He, W., Li, Y., ... & Fang, X. (2022). RNA-Seq Analysis Identifies Differentially Expressed Genes in the Longissimus dorsi of Wagyu and Chinese Red Steppe Cattle. International Journal of Molecular Sciences, 24(1), 387. https://doi.org/10.3390/ijms24010387
Liu, C. C., Tsai, C. W., Deak, F., Rogers, J., Penuliar, M., Sung, Y. M., ... & Bu, G. (2014). Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron, 84(1), 63-77. http://dx.doi.org/10.1016/j.neuron.2014.08.048
Liu, C. H., Hu, R. H., Huang, M. J., Lai, I. R., Chen, C. H., Lai, H. S., ... & Huang, M. C. (2014). C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One, 9(8), e94995. https://doi.org/10.1371/journal.pone.0094995
Marín-Garzón, N. A., Magalhães, A. F. B., Schmidt, P. I., Serna, M., Fonseca, L. F. S., Salatta, B. M., ... & Albuquerque, L. G. (2021). Genome-wide scan reveals genomic regions and candidate genes underlying direct and maternal effects of preweaning calf mortality in Nellore cattle. Genomics, 113(3), 1386-1395. https://doi.org/10.1016/j.ygeno.2021.02.021
Mas, S., Gassó, P., Bernardo, M., & Lafuente, A. (2013). Functional analysis of gene expression in risperidone treated cells provide new insights in molecular mechanism and new candidate genes for pharmacogenetic studies. European Neuropsychopharmacology, 23(4), 329-337. https://doi.org/10.1016/j.euroneuro.2012.04.016
Matsuura, S., Igarashi, M., Tanizawa, Y., Yamada, M., Kishi, F., Kajii, T., ... & Nakazawa, A. (1989). Human adenylate kinase deficiency associated with hemolytic anemia: a single base substitution affecting solubility and catalytic activity of the cytosolic adenylate kinase. Journal of Biological Chemistry, 264(17), 10148-10155. https://doi.org/10.1016/S0021-9258(18)81779-3
McPhaul, M. J., Marcelli, M., Zoppi, S., Griffin, J. E., & Wilson, J. D. (1993). Genetic basis of endocrine disease. 4. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. The Journal of Clinical Endocrinology & Metabolism, 76(1), 17-23. https://doi.org/10.1210/jcem.76.1.8421085
Molli, P. R., Singh, R. R., Lee, S. W., & Kumar, R. (2008). MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene, 27(14), 1971-1980. https://doi.org/10.1038/sj.onc.1210839
Morra, F., Luise, C., Merolla, F., Poser, I., Visconti, R., Ilardi, G., ... & Celetti, A. (2015). FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget, 6(14), 12697. https://doi.org/10.18632/oncotarget.3708
Qi, C., Zhu, Y., Pan, J., Usuda, N., Maeda, N., Yeldandi, A. V., ... & Reddy, J. K. (1999). Absence of spontaneous peroxisome proliferation in enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver: Further support for the role of fatty acyl CoA oxidase in PPARα ligand metabolism. Journal of Biological Chemistry, 274(22), 15775-15780. https://doi.org/10.1074/jbc.274.22.15775
Sá Filho, M. F. D., Gonella-Diaza, A. M., Sponchiado, M., Mendanha, M. F., Pugliesi, G., Ramos, R. D. S., ... & Binelli, M. (2017). Impact of hormonal modulation at proestrus on ovarian responses and uterine gene expression of suckled anestrous beef cows. Journal of animal science and biotechnology, 8(1), 1-14. https://doi.org/10.1186/s40104-017-0211-3
Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., ... & Wellcome Trust Kennedy Karen 67 Jamieson Ruth 64 Stewart John 64. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913-918. https://doi.org/10.1038/nature06250
Saito, R., Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., Lotia, S., ... & Ideker, T. (2012). A travel guide to Cytoscape plugins. Nature methods, 9(11), 1069-1076. https://doi.org/10.1038/nmeth.2212
Santana, M. H. A., Kadarmideen, H., Pant, S., Alexandre, P., Junior, G. O., Gomes, R., ... & Ferraz, J. B. S. (2014, August). Systems genetics investigations for feed intake, feed efficiency and performance in Nellore (Bos indicus) Cattle. In 10th World Congress on Genetics Applied to Livestock Production.
Santana, M. H. D. A., Ventura, R. V., Utsunomiya, Y. T., Neves, H. H. D. R., Alexandre, P. A., Oliveira Junior, G. A., ... & Ferraz, J. B. S. (2015). A genomewide association mapping study using ultrasound‐scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. Journal of Animal Breeding and Genetics, 132(6), 420-427. https://doi.org/10.1111/jbg.12167
Schlötterer, C. (2003). Hitchhiking mapping–functional genomics from the population genetics perspective. Trends in Genetics, 19(1), 32-38. https://doi.org/10.1016/S0168-9525(02)00012-4
Shaw, C. A., Li, Y., Wiszniewska, J., Chasse, S., Zaidi, S. N. Y., Jin, W., ... & Szigeti, K. (2011). Olfactory copy number association with age at onset of Alzheimer disease. Neurology, 76(15), 1302-1309. https://doi.org/10.1212/WNL.0b013e3182166df5
Sherman, E. L., Nkrumah, J. D., & Moore, S. S. (2010). Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle. Journal of animal science, 88(1), 16-22. https://doi.org/10.2527/jas.2008-1759
Smith, R. L., Strawderman, R. L., Schukken, Y. H., Wells, S. J., Pradhan, A. K., Espejo, L. A., ... & Gröhn, Y. T. (2010). Effect of Johne's disease status on reproduction and culling in dairy cattle. Journal of dairy science, 93(8), 3513-3524. https://doi.org/10.3168/jds.2009-2742
Tidcombe, H., Jackson-Fisher, A., Mathers, K., Stern, D. F., Gassmann, M., & Golding, J. P. (2003). Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proceedings of the National Academy of Sciences, 100(14), 8281-8286. https://doi.org/10.1073/pnas.1436402100
Utsunomiya, Y. T., Pérez O'Brien, A. M., Sonstegard, T. S., Sölkner, J., & Garcia, J. F. (2015). Genomic data as the “hitchhiker's guide” to cattle adaptation: tracking the milestones of past selection in the bovine genome. Frontiers in Genetics, 6, 36. https://doi.org/10.3389/fgene.2015.00036
Van der Giessen, J. W. B., Eger, A., Haagsma, J., Haring, R. M., Gaastra, W., & Van Der Zeijst, B. A. M. (1992). Amplification of 16S rRNA sequences to detect Mycobacterium paratuberculosis. Journal of medical microbiology, 36(4), 255-263. https://doi.org/10.1099/00222615-36-4-255
Wang, L., Gao, Y., Wang, J., Huang, N., Jiang, Q., Ju, Z., ... & Huang, J. (2022). Selection Signature and CRISPR/Cas9-Mediated Gene Knockout Analyses Reveal ZC3H10 Involved in Cold Adaptation in Chinese Native Cattle. Genes, 13(10), 1910. https://doi.org/10.3390/genes13101910
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. evolution, 1358-1370. https://doi.org/10.2307/2408641
Zhang, H., Shen, L. Y., Xu, Z. C., Kramer, L. M., Yu, J. Q., Zhang, X. Y., ... & Li, H. (2020). Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poultry science, 99(5), 2349-2361. https://doi.org/10.1016/j.psj.2020.01.009
Zhang, X., Dong, W., Zhou, H., Li, H., Wang, N., Miao, X., & Jia, L. (2015). α‐2, 8‐sialyltransferase is involved in the development of multidrug resistance via PI 3 K/A kt pathway in human chronic myeloid leukemia. IUBMB life, 67(2), 77-87. https://doi.org/10.1002/iub.1351