مقایسه عملکرد برخی از توابع غیرخطی در توصیف منحنی رشد گوسفند نژاد زندی

نوع مقاله : مقاله پژوهشی

نویسنده

باشگاه پژوهشگران جوان و نخبگان، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

چکیده

در این تحقیق برازش مدل­های غیرخطی ون­برتالانفی، گومپرتز، برودی و لجستیک در توصیف منحنی رشد گوسفندان نژاد زندی ایستگاه خُجیر بررسی شد. بدین منظور از 14569 رکورد وزن بدن (از تولد تا 400 روزگی) که به‌صورت روزانه از 3581 رأس گوسفند در سال­های 1370 تا 1392 گرد‌آوری ‌شده بودند، استفاده شد. هر مدل با استفاده از رویة حداقل مربعات غیرخطی (NLIN) نرم‌افزار آماری SAS به­طور جداگانه روی همۀ مشاهده‌ها و نیز به تفکیک فاکتورهای محیطی مؤثر بر وزن بدن (مانند جنس، نوع تولد، فصل تولد، سال تولد و سن مادر در زمان زایش) برازش داده شد. نکوئی برازش هر یک از این مدل­ها با استفاده از معیارهای ضریب تبیین تصحیح‌شده (R2Adj)، معیار اطلاعات آکائیک (AIC)، انحراف معیار مانده­ها (RMSE) و دوربین- واتسون (DW) تعیین شد. بر پایۀ معیارهای مختلف نکوئی برازش، همۀ مدل­های موردبررسی در این پژوهش به‌خوبی توانایی برازش منحنی رشد گوسفندان زندی را دارند. به­هرحال نتایج این بررسی نشان داد که مدل لجستیک با داشتن بالاترین دقت (R2Adj= 0.9702; AIC= 85886) و کم‌ترین خطا (RMSE= 4.61) بهتر از دیگر توابع ریاضی منحنی رشد گوسفند نژاد زندی را برازش کرده و به دنبال آن به ترتیب مدل­های گومپرتز، ون­برتالانفی و برودی قرار گرفتند. نتایج به‌دست‌آمده از این پژوهش نشان می­دهد که از مدل لجستیک می­توان در تنظیم برنامه­های تغذیه­ای، تعیین مشکلات مدیریتی و سن مناسب کشتار بره­های ایستگاه اصلاح نژاد خُجیر کمک گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Performance comparisons of some nonlinear functions in describing the growth curve of Zandi sheep breed

نویسنده [English]

  • Khabat Kheirabadi
Young Researchers and Elite Club, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
چکیده [English]

In this research fitness of nonlinear models of Von Bertalanffy, Gompertz, Brody and Logistic to describe the growth curve of Zandi sheep breed of Khojir station was studied. In this order from 14569 body weight records (from birth to 400 days of age) which have been recorded as daily from 3581 heads during the years 1992 to 2014 were used. Each model was fitted separately to body weight records using whole data, and also for different environmental factors (i.e., sex, type of birth, season of birth, year of birth and age of dam) separately using the nonlinear least square (NLIN) procedure of SAS. Goodness of fit of each model was determined using adjusted multiple coefficient of determination (R2Adj), Akaike’s information criterion (AIC), root mean square error (RMSE) and Durbin-Watson (DW). All used models in the current study fitted the growth data of Zandi sheep well based on different goodness of a fitting criteria. However, the results showed that Logistic growth model with the highest accuracy (R2Adj= 0.9702; AIC= 85886) and the lowest error (RMSE= 4.61) could describe growth curve better than the other growth models, and was followed by Gompertz, Von Bertalanffy and Brody growth models, respectively. The results of this research indicate that the Logistic model can be used to the regulate feeding programs, determination of management problems and optimum slaughtering age of lambs at the Khojir breeding situation.

کلیدواژه‌ها [English]

  • Growth parameters
  • mathematical functions
  • nonlinear least square procedure
  1. Abegaz, S., Van Wyk J.B. & Olivier, J.J. (2010). Estimation of genetic and phenotypic parameters of growth curve and their relationship with early growth and productivity in Horro sheep. Archic Tierzucht, 53, 85-94.
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. Automatic Control, 19, 716-723.
  3. Arango, J. & Van Vleck, L.D. (2002). Size of beef cows: early ideas, new developments. Genetics and Molecular Research, 1, 51-63.
  4. Bahreini Behzadi, M.R. (2015). Comparison of different growth models and artificial neural network to fit the growth curve of Lori-Bakhtiari sheep. Journal of Ruminant Research, 3,125-148. (in Farsii)
  5. Bahreini Behzadi, M.R., Aslaminejad, A., Sharifi, A. & Simianer, H. (2014). Comparison of mathematical models for describing the growth of Baluchi sheep. Journal of Agricultural Science and Technology, 14, 57-68.
  6. Bathaei, S. & Leroy, P. (1996). Growth and mature weight of Mehraban Iranian fat-tailed sheep. Small Ruminant Research, 22, 155-162.
  7. Bathaei, S. & Leroy, P. (1998). Genetic and phenotypic aspects of the growth curve characteristics in Mehraban Iranian fat-tailed sheep. Small Ruminant Research, 29, 261-269.
  8. Brody, S. (1945). Bioenergetics and growth. Reinhold Publishing, New York.
  9. Brown, J., Fitzhugh, H. & Cartwright, T. (1976). A comparison of nonlinear models for describing weight-age relationships in cattle. Journal of Animal Science, 42, 810-818.
  10. Canaza-Cayoa, A.W., Huancab, T., Gutiérrezc, G.P. & Beltrán P.A. (2015). Modelling of growth curves and estimation of genetic parameters for growth curve parameters in Peruvian young llamas (Lama glama). Small Ruminant Research, 130, 81-89.
  11. Dudouet, E. (1982). Theoretical lactation curve of the goat and its applications. Le Point Veterinak, 14, 53-61.
  12. Durbin, J. (1970). Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables. Econometrica: Journal of the Econometric Society, 410-421.
  13. Fitzhugh, H. (1976). Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, 42, 1036-1051.
  14. Gbangboche, A., Glele-Kakai, R., Salifou, S., Albuquerque, L. & Leroy, P. (2008). Comparison of non-linear growth models to describe the growth curve in West African Dwarf sheep. Animal, 2, 1003-1012.
  15. Ghafouri-Kesbi, F. & Eskandarinasab, M. P. (2008). An evaluation of maternal influences on growth traits: the Zandi sheep breed of Iran as an example. Journal of Animal and Feed Science, 17, 519-529.
  16. Ghavi Hossein-Zadeh, N. (2015). Modeling the growth curve of Iranian Shall sheep using non-linear growth models. Small Ruminant Research, 130, 60-66.
  17. Groeneveld, E., Mostert, B. E. & Rust, T. (1998). The covariance structure of growth traits in the Afrikaner beef population. Live Stock Production Science, 55, 99-107.
  18. Kachman, S. D. & Gianola, G. (1984). A Bayesian estimator of variance and covariance components in nonlinear growth models. Journal of Animal Science, 59, 176.
  19. Kaps, M. & Lamberson, W. R. (2004). Biostatistics for Animal Science. Wallingford CABI Publ. (pages 172-177).
  20. Keskin, I., Dag, B., Sariyel, V. & Gokmen, M. (2010). Estimation of growth curve parameters in Konya Merino sheep. South African Journal of Animal Science, 39, 163-168.
  21. Kshirsagar, A.M. & Smith, W.B. (1995). Growth Curves. Marcel Dekker, New York, 1–57.
  22. Kucuk, M., Eyduran, E., Bolacali, M. & Ozdemir, T. (2009). Determination of the best growth curve for body weights of (Angora X Coloured Nohair Goat) cross-breed F1 and colored mohair goat kids. Indian Veterinary Journal, 86, 46-49.
  23. Laird, A.K. (1966). Postnatal growth of birds and mammals. Growth, 30, 349-363.
  24. Lambe, N.R., Navajas, E.A., Simm, G. & Bunger, L. (2006). A genetic investigation of various growth models to describe growth of lambs of two contrasting breeds. Journal of Animal Science, 84, 2642-2654.
  25. Lewis, R.M. & Brotherstone, S. (2002). A genetic evaluation of growth in sheep using random regression techniques. Animal Science, 74, 63-70.
  26. Loibel, S., Andrade, M.G., do Val, J.B. & Freitas, A.R.d. (2010). Richards's growth model and viability indicators for populations subject to interventions. Anais da Academia Brasileira de Ciências, 82, 1107-1126.
  27. Mandal, A., Roy, R. & Rout, P.K. (2008). Direct and maternal effects for body measurements at birth and weaning in Muzaffarnagari sheep of India. Small Ruminant Research, 75,123127.
  28. Naesholm, A. & Danell, O. (1996). Genetic relationships of lamb weight, maternal ability, and mature ewe weight in Swedish finewool sheep. Journal of Animal Science-Menasha then Albany then Champaign Illinois, 74, 329-339.
  29. Nelder, J. (1961). The fitting of a generalization of the logistic curve. Biometrics, 17, 89-110.
  30. Nikkhah, M., MotaghiTalab, M. & Zavareh, M. (2010). Hyperbolastic vs. Classic Model to Estimate Male Broiler Chicken Growth. Iranian Journal of Animal Science, 40, 71-78. (in Farsi)
  31. Oberstone, J. (1990). Management science: Instructor's manual with solutions of text exercises to accompany: concepts, insights, and applications. West Publishing Company.
  32. Rahimi Kakolaki, M., Farhangfar, H., Montazer Torbati, M. B. & Eghbal, E. (2015). Description of growth curve in Iranian sheep breeds using Gompertz nonlinear function. Journal of Livestock Research, 4, 22-38. (in Farsi)
  33. Richards, F. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-300.
  34. Saraee, H., Farhangfar, H. & Naeemipour, H. (2013). Phenotypic Changes of Maximum Daily Growth Trait in Baluchi Lambs. Iranian Journal of Animal Science Research, 50, 69-76. (in Farsi)
  35. SAS Institute Inc. (2003). SAS 9.1.3 Help and documentation, Cary, NC, USA: SAS Institute Inc.
  36. Teket, N., Sireli, H. D., Elicin, M. & Elicin, A. (2005). Comparison of growth curve models on Awassi lambs. Indian Veterinary Journal, 82, 179-182.
  37. Topal, M., Ozdemir, M., Aksakal, V., Yildiz, N. & Dogru, U. (2004). Determination of the best nonlinear function in order to estimate growth in Morkaraman and Awassi lambs. Small Ruminant Research, 55, 229-232.
  38. Von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. Quarterly Review of Biology, 32, 217-231.
  39. Vuori, K., Stranden, I., Sevon-Aimonen, M. L. & Mantysaari, E. A. (2006). Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function. Genetics Selection and Evolution, 38, 343-358.
  40. Waheed, A., Sajjad Khan, M., Ali, S. & Sarwar, M. (2011). Estimation of growth curve parameters in Beetal goats. Archiv Tierzucht, 54, 287-296.