بررسی افزودن متونیون و لرزین محفظت شده شکمیهای به چربه‌های حاوی سطل‌های مختلف پروتئین بر عملکرد تولیدی و فرآیندهای تخمیری گاو‌های شیرده هفت‌ماه‌ی در اواخر دوره شیردهی

حسین عبیدی نماد، کامران رضایی‌پور* و مهدي بهمنی‌بانکی

1 ۱،۲،۳ دانشجوی دکتری و ۴ دانش‌پژوهی و ۵ دانشگاه‌های ایران (تاریخ دریافت: ۸۹/۱۲/۱۶ - نخستین نسیبی: ۴۹۰/۳۶۸۵)

چکیده

هدف از این مطالعه، بررسی اثر افزودن متونیون و لرزین محفظت شده شکمیهای به چربه‌های حاوی سطل‌های مختلف پروتئین بر عملکرد تولیدی و فرآیندهای تخمیری گاو‌های شیرده هفت‌ماه‌ی در اواخر دوره شیردهی بود. تعداد ۱۱۴ رأس گاو شیرده هفت‌ماه‌ی در اواخر دوره شیردهی در قالب طرح بلوک‌های کامل تصادفی با ۳ جریه و ۷ گاو در هر جریه به مدت ۳۵ روز تحت آزمایش قرار گرفتند. چربه‌های آزمایشی شامل: ۱) چربی حاوی پروتئین بالا با ۱/۵ درصد پروتئین خام، ۲) چربی دارای پروتئین مناسب با ۱/۵ درصد پروتئین خام همراه با ۴/۰ درصد پروتئین محلول شده شکمیهای یونوئید. نتایج به دست آمده نشان داد که مصرف ماهی شیر، نتیجه‌ی مولی اسیدهای چرب فرار و pH مایع شکمیه تحت تأثیر چربه‌های آزمایشی قرار نگرفتند. لی مایع شکمیه‌گاو‌های داشتن (۱۰/۰/۵%). با توجه به نتایج به دست آمده، سطح ۱۶ درصد پروتئین خام به همراه مکمل می‌تواند عملکرد بهتری نسبت به سایر چربه‌های آزمایشی داشته.

واژه‌های کلیدی: متونیون و لرزین محفظت شده شکمیهای پروتئینی، پروتئین خام چربی، گاو شیرده، تولید و ترکیب شیر، فرآیندهای شکمیهای.

مقدمه

طی سال‌های گذشته، تحقیقات بسیاری در مورد تغذیه پروتئین و تأثیر اسیدهای آمينه مورد نیاز گاو‌های شیرده پرورشی به منظور حمایت از افزایش تولید شیر و پروتئین‌های صورت گرفته است (Dinn et al., 1998; Broderick, 2003; Broderick et al., 2008) بررسی‌های شیرده موجود در خراکی گاو‌های شیرده برای رشد میکروب‌های شکمیه ضروری است و پروتئین میکروبی و خوراک رشد به روش بازیک، تأمین گردیده نیازهای اسید آمينه بدن نخوش‌کارکردنگان می‌باشد.

*نویسنده مسئول: کامران رضایی‌پور

E-mail: rezayazdi@ut.ac.ir

تلخن: ۳۹۱۲۵۱۵۳۹۳-۱۲۵۱۰۰۰

Blum et al., 1999) اگرچه گاو‌های شیرده، پروتئین خام خوراک را با یاده به‌اتنی نسبت به دیگر دام‌های نخوشت‌پروری مورد استفاده قرار می‌دهند، البته عناصر ۲ تا ۳ برابر نیترژین موجود در شیر را از طریق کود دفع می‌کند (Broderick, 2005).

از این علت تغذیه چربه‌های پروتئین به دلیل از افزایش هزینه تولید شیر و اثرات ضرر بر تولید شیر می‌باشد، لذا تغذیه چربه‌های با پروتئین بالا، علاوه بر افزایش دفع مقداری زیردانی نیترژین به محیط می‌شد (Broderick, 2005) (تقرباً ۵/۰ کل نیترژین ورودی از سیستم‌های زمینی به اندازه از سیستم‌های پرورشی دام‌ها می‌باشد.)
از اوج شیردهی مورد مطالعه قرار گرفته است (Piepenbrink et al., 1996; Leonardi et al., 2003; Socha et al., 2005; Broderick et al., 2008).

با توجه به موارد ذکر شده، نتایج انجام شده که گالوتیمهای شیرده صورت گرفته و در دو گروه گالوتیم به بهترین نمره گان مصرفی گالوتیم مصرفی شیرده آزمایش گردیده، در حالی که گالوتیمهای شیرده شیره گذشته در حالی که گالوتیم به بهترین نمره گان مصرفی توانست تولید شری را با میزان 11/4 کیلوگرم در روز و تولید گالوتیم شیری را با میزان 100 گرم در روز کاهش دهد (Broderick et al., 2003).

پژوهش گرفته در سالهای اخیر، تألیف افزاش لیزرین هیدروکلراید به چربی غذایی گالوتیم شیرده پس ممنش این گیده مورد تأکید 25 تا 36 درصد نیتروژن مصرفی را به صورت نیتروژن شیر ترشح می کنند و این امر از طریق منطقه و اداره دفع می کند (Leonardi et al., 2003).

پژوهش انجام گرفته بر اساس اطلاعاتی از افزودن لیزرین هیدروکلراید به چربی غذایی گالوتیم شیرده پس
تجهیز مقاومت به تجزیه شکم‌های و قابلیت هضم
رودهای منبع یادوی و لیزین محیط زیست هدمور (Mord) (2000) Berthiaume et al. استفاده از روشهای بررسی قرار درخت (جدول 3) و از این داده‌ها جهت آزمایش گردید و جریان آزمایشی به وسیله نرم‌افزار Amino Cow، Mepron Ration Evaluator نویز پسندی استفاده گردید. این روش به ترتیب شامل اکووالون کیسه‌های حاوی مکمل آمینو اسیدی محیط شده شکم‌های شده در حدود ۲۵ ساعت در منبع شکم‌ها از طریق محفظه شکم‌های، سپس اکووالون در محلول پپسین- اسید انیل، در حدود ۱/۵ ساعت و سپس اکووالون دیگری از طریق فمبالون محفظه و استفاده از تکنیک و محفظه در هنگام جمع‌آوری کیسه‌ها از مدفوع و اندوزه‌گیری میزان اسید آبیه باقی مانده در پذیرش، مقدار میانه اسید آبیه تایید شده در شکم‌ها، پس از درک رزرودها مقاومت شکم‌های قابلیت هضم رودهای و اسید آبیه فراهم از رو به راه منبع اسید محیط زیست شکم‌های اسید آبیه با استفاده از معادلات زیر پرورید گردید (Berthiaume et al., 2000)

AA disappearance in the rumen = [(AA in original bags - AA left after 4.5 h in the rumen)/AA in original bags] * 100

Ruminal resistance = 100 - AA disappearance in the rumen

AA disappearance in the postrumen = [(AA left after 4.5 h in the rumen - AA left after pepsin-HCL incubation and intestinal digestion) / AA left after 4.5 h in the rumen] *100

AA disappearance in the total tract = [(AA in original bags - AA disappearance in the rumen - AA disappearance in the postrumen) / (100 - AA disappearance in the rumen)]

Postruminal digestibility = AA disappearance in the postrumen / (100 - AA disappearance in the rumen)

AA available in small intestine = AA disappearance in the postrumen * (100 - AA disappearance in the rumen)

جدول ۱- مواد تشکیل‌دهنده جریان آزمایشی

<table>
<thead>
<tr>
<th>مواد خوراکی</th>
<th>جیره ۱</th>
<th>جیره ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۱۶۵۸</td>
<td>۱۵۹۳</td>
</tr>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۱۰۱</td>
<td>۱۲۱</td>
</tr>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۳۷</td>
<td>۴۴</td>
</tr>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۲۱</td>
<td>۲۲</td>
</tr>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۱۴</td>
<td>۱۶</td>
</tr>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>نیتروژن تغییرات (mg)</td>
<td>۳</td>
<td>۴</td>
</tr>
</tbody>
</table>

* مقادیر بروز در دشت بسته به وسیله نرم‌افزار Amino Cow, Mepron Ration Evaluator

1. Rumen Degradable Protein
2. Rumen Undegradable Protein
3. Non Fibrous Carbohydrates
4. Neutral Detergent Fiber
5. Acid Detergent Fiber
منظور تعیین BHBA و NEFA به آزمایشگاه دامپزشکی منبای ارسال گردید. تحقیم نیترورژن دفعی از طریق ادراز با استفاده از غلظت نیترورژن شیار و براز بدن با استفاده از معادله (2001) Kuffman & St. Pierre انجام شد. همچنین نمونه‌ها مواد خوراکی و مکمل‌های اسید آمینه‌ای جهت اندازه‌گیری مقدار متوسط و لیزین به ارزش‌گذاری مسعود واقع در همان ارسال مورد بررسی و با استفاده از روش کروماتوگرافی با عملکرد بالا (HPLC) مورد آنالیز قرار گرفت.

با توجه به نکات شدن برخی از داده‌ها در طول زمان انجام‌گیری، نمونه‌های مورد بررسی تولید و ترکیبات شیر، آنالیز ابتدا و با روش SAS (1998) MIXED بررسی و ترکیبات آن (چهار بار در علت رکوردگیری نمونه برداری انجام گرفت و نمونه‌های شیر جهت تعیین میزان درصد پروتئین، پروتئین و نیترورژن ارزیابی شیر به آزمایشگاه شیر شهریار ارسال گردید و با استفاده از دستگاه مایکن اسکن (Foss Electric, Denmark) مورد آنالیز قرار گرفت.

آزمایش ۴ ساعت بعد از خوراکدهی صبح با استفاده از شیر مخصوص و پک در حال اندازه‌گیری میزان اسیدهای چرب قارا، غلظت نیترورژن آمونیاکی شیمیایی و pH به‌عنوان شکم‌های انجام شد. نمونه‌های مابین شکم‌های مورد استفاده جهت اندازه‌گیری اسیدهای چرب قارا و غلظت آمونیاکی شکم‌های به‌عنوان pH میلی‌لیتر اسید سولفوریک درصد به میلی‌لیتر مایع شکم‌های تا زمان رویگیری آنالیز در کروم‌گر (GC) در آزمایشگاه تغذیه دام (از آزمایشگاه تغذیه دام) سایپکس (Sipex) و آمارهای مورد نظر در جدول‌های زیر آورده شده است. 

میزان و فراهم‌آوری اسیدهای آمینه در متان سیمسیک‌های محیط‌های فیبرگلاس

میزان اسید آمینه محیط شده شکم‌هایی به مقدار گزارش شده توسط سازنده تازه سازی نشده بود (به ترتیب 36/7 و 94 درصد مقدار گزارش شده توسط شرکت سازنده بای می‌باشد). این مقامات شکم‌هایی و میزان اسید آمینه این سیمیک‌های محیط‌های فیبرگلاس به مکمل میتوین می‌باشد، حالت در یک گفت‌وگوی می‌باشد. حالت در یک گفت‌وگوی محیط‌های فیبرگلاس به مکمل میتوین محیط‌های شده.

جدول ۳- میزان و تأثیر اسید آمینه از میزان اسید آمینه محیط شده شکم‌هایی قسمتهای مختلف دستگاه گوارش

<table>
<thead>
<tr>
<th>متانولیس (درصد)</th>
<th>میزان اسید آمینه (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.0125</td>
</tr>
<tr>
<td>0.00625</td>
<td>0.00625</td>
</tr>
<tr>
<td>0.003125</td>
<td>0.003125</td>
</tr>
</tbody>
</table>

میزان اسید آمینه محیط شده شکم‌هایی قسمتهای مختلف دستگاه گوارش

<table>
<thead>
<tr>
<th>متانولیس (درصد)</th>
<th>میزان اسید آمینه (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.0125</td>
</tr>
<tr>
<td>0.00625</td>
<td>0.00625</td>
</tr>
<tr>
<td>0.003125</td>
<td>0.003125</td>
</tr>
</tbody>
</table>

میزان اسید آمینه محیط شده شکم‌هایی قسمتهای مختلف دستگاه گوارش

<table>
<thead>
<tr>
<th>متانولیس (درصد)</th>
<th>میزان اسید آمینه (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>0.0125</td>
<td>0.0125</td>
</tr>
<tr>
<td>0.00625</td>
<td>0.00625</td>
</tr>
<tr>
<td>0.003125</td>
<td>0.003125</td>
</tr>
</tbody>
</table>
پروتئین قابل منالولیسم بود را مطالعه کردند و گزارش کردند که چگونه دارای مکمل متبینیه موش بهبود مقدار چربی شده و چربی های دارای مکمل متبینی، لیزین با متبینیون و لیزین موجب افزایش تولید شیر و بهبود راندمان مورد استفاده قرار گرفتند. نتیجه‌ی برای تولید پروتئین شیر گردید که با تاثیر تحقیق حاضر مطالعه دارد. در مطالعه این محققین، از یکی از 2-hydroxy-4-(methylthio)butanoic acid (HMB) به عنوان منبع متبینیون و از لیزین هیدروکلراید به عنوان لیزین استفاده شد. اگرچه این کلردان که با استفاده از مکمل لیزین و متبینیون، نیازهای تغذیهای شده این اسیدهای آمینه توسط (NRC 2001) را که به صورت درصدی از تغذیه‌ی اورجینال (ام‌دی یا SEM) یا موجود در سطح اصلی می‌باشد.

جدول 1- اثر گروه‌های آزمایشی بر تولید و ترکیبات شیر، ماده خشک مصرفی و تغییرات وزن بدنشت

<table>
<thead>
<tr>
<th></th>
<th>GHE O</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GHE 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>بی‌بی</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24/29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33/24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49/29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/11</td>
</tr>
</tbody>
</table>

دستگاه‌های گردش قابل متابولیسم نیز با توجه به باعث افزایش میزان 3 به 1 تغییرات وزن بدنشت شده است. (Schwab et al., 1992; NRC, 2001) بهبود درصد پروتئین صورت گرفته است. در اثر افزودن مکمل متبینیون محافظت شده شکم‌های به چربه غذایی گذشته شده و بهبود درصد پروتئین شیر در اثر افزودن مکمل متبینیون محافظت شده شکم‌های به چربه غذایی گذشته شده و بهبود درصد پروتئین شیر در اثر افزودن مکمل متبینیون محافظت شده شکم‌های به چربه غذایی گذشته شده و...
(Overton & Waldron, 2004) محققانی که تأثیر متابولیسم در بیماری و ادمان آن از روش‌های اولیه را مورد بررسی قرار داده‌اند، عمدهاً افزایش تولید السردر در طی اولین دوره شیردهی را (Soh et al., 1994; Overton et al., 2000). گزارش کردنی (2008) Davidson et al. که تغذیه مکمل متابولیسم در یک جبره غذایی با کم‌ثبات متابولیسم تأثیری بر فراسته‌های متغیر مانند غلظت استفاده چربی اسفئیفی نشد، گاهی‌کنی پونترات و لیپروپتین‌های با گاجیکی پایین نداشتند. در مطالعه حاضر نیز چرب‌های گیاهی کم پروتئین از نظر متابولیسم مواد نیاز کمبود داشته و افزودن مکمل غذآل با هدف تأمین نیاز متابولیسم روزانه انجام گردید و به نظر می‌رسد که در چرب‌های غذایی مکمل متابولیسم نتایج درفرود متابولیسم بر شاخص‌های انرژی و جلوگیری از کنتر و کبد چرب داشتند. نتیجه‌پذیری این اثر بر اثر تغذیه کم‌پروتئین گیاهی تأثیر گذار (2005). بنابراین با نتیجه‌های به دست آمده از تحقیقات قبلی و مطالعات قبیل منابعی دارد (Cressman et al., 1980; Dinn et al., 1998; Leonardi et al., 2003; Broderick et al., 2008). در این سطح پروتئین بیش‌سازی می‌کند. کاهش درصد پروتئین خام چرب‌های غذایی موجب کاهش معنی‌دار نیتروژن اورژن شیر گردید که با نتایج گزارش شده (Leonardi et al., 2003; Davidson et al., 2003; Broderick et al., 2008) (1997) Hof et al. ارور این شیر نشان‌دهنده چرب‌های غذایی می‌باشد که در مطالعه حاضر ماهسه شد با نتایج گزارش شده تحقیقات قبیل (Dinn et al., 1998; Broderick et al., 2008) که در چرب‌های غذایی انتخابی 16/15 درصد پروتئین، خام بالاتر بودن پایه نیتروژن عمدهاً با الگو گاهی پایین‌تر نیتروژن می‌باشد (Leonardi et al., 2003; Broderick et al., 2008). فراسته‌های غذایی و نیتروژن دفعی اداری گفته‌های اسیدهای چرب استریفی نشد و با تغذیه پونترات پونترات باارزش نشان داده شد که به تعداد کم گرو استuede بانگامی ارزی جایگاه را نمی‌بیند. گزارش کردنی (2003) Leonardi et al. افزایش غلظت پروتئین جبیر غذایی با میزان 1/2 درصد، نیتروژن دفعی اداری در میزان 5/2 درصد گرو افزایش می‌یابد. در حالی که نتایج ادنی نیتروژن دفعی از طریق شیر می‌توانند مشاهده شوند. شاید ذکر است که در ارتباط با اوغیر محضی، پروتوژن اداری نیز نیتروژن دفعی دارد. در تأثیر بیشتری نسبت به نیتروژن دفعی دارد.

جدول ۵- اثر چرب‌های آزمایشی بر فراسته‌های غذایی

<table>
<thead>
<tr>
<th>P</th>
<th>SEM</th>
<th>جبهه ۱</th>
<th>جبهه ۲</th>
<th>جبهه ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>۰/۶</td>
<td>۲۷۷</td>
<td>۲۷۷</td>
<td>۳۳۳</td>
</tr>
<tr>
<td>ns</td>
<td>۰/۷</td>
<td>۴۵۷</td>
<td>۴۵۷</td>
<td>۴۵۷</td>
</tr>
<tr>
<td>e</td>
<td>۱/۳/۱۹۸.</td>
<td>۲۴۱/۱۵۸.</td>
<td>۲۴۱/۱۵۸.</td>
<td>۲۴۱/۱۵۸.</td>
</tr>
</tbody>
</table>
جوهرهای با غلظت پایین پروتئین خام، مقدار مzem اصلی دفع نیتروژن است. در حالی که با افزایش سطح پروتئین جهره غذایی، دفع اداری نیتروژن افزایش یافته و می‌توان در ۲۰ درصد نیتروژن مارد را نیاز دار از طریق

Castillo et al., 2001

فراسنج‌های شکم‌های
نسبت‌های مولی اسیدهای چرب فزار، غلظت کل اسیدهای چرب فزار، نسبت استات به پروپیونات و pH شکم‌های تحت تاثیر جهره‌های آزمایی قرار نگرفت و لی کاهش پروتئین جهره غذایی به طور معنی‌داری موجب کاهش غلظت نیتروژن آمونیاک در شکم‌های گردید (جدول ۱). عدم تاثیر گاهی پروتئین جهره غذایی بر نسبت مولی استات، پروپیونات و دیگر اسیدهای چرب فزار که در این مطالعه مشاهده گردید، با نتیجه دست آمده در مطالعات قبلی که سطح پروتئین مشابهی با سطوح پروتئین مورد استفاده در مطالعه حاضر را مورد بررسی قرار داده بودند، مطابقت دارد (Halter et al., 1982; Davidson et al., 2003; Broderick et al., 2008). بنابراین (الگویی) ۲۰۰۸) که به عنوان میزان و در نتیجه مصرف کمتر پروتئین، قابل توجهی در شکم‌های می‌باشد (جدول ۲). گزارش کردن که غلظت‌های نیتروژن آمونیاک بالاتر از ۵ میلی‌گرم در دسی‌لیتر بر تولید پروتئین میکروبی در محیط‌های کشت پوسته از نهایت احتیاجات نیتروژن میکروبی شکم‌های یا با این غلظت ارائه می‌شود و غلظت نیتروژن آمونیاک ذکر شده با تغذیه جهره‌های حاوی ۱۴ درصد پروتئین خام تأمین خواهد شد (Satter & Roßler, 1975).

جدول ۵-اثر جهره‌های آزمایشی بر فراسنج‌های شکم‌های

<table>
<thead>
<tr>
<th>P</th>
<th>SEM</th>
<th>جهره‌های آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns</td>
<td>0.99</td>
<td>استات (میکرو مولار)</td>
</tr>
<tr>
<td>ns</td>
<td>0.99</td>
<td>پروپیونات (میکرو مولار)</td>
</tr>
<tr>
<td>ns</td>
<td>0.98</td>
<td>یوپراوات (میکرو مولار)</td>
</tr>
<tr>
<td>ns</td>
<td>0.98</td>
<td>اکسیژنیوم (میکرو مولار)</td>
</tr>
<tr>
<td>ns</td>
<td>0.98</td>
<td>pH</td>
</tr>
</tbody>
</table>

مطالعات در سال‌های ۱۹۶۷–۱۹۷۰. ۱۴ نمونه‌ها در میان گروه‌هایی ساخته شدند.
REFERENCES


